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Benchmarks drive new machine learning architectures
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Neural Networks Deep Reinforcement Learning Large-scale Transformers



What are good tasks/benchmarks?
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CLEVR Meta-world

● How can we evaluate the difficulty of these benchmarks? Which ones will 
encourage the development of more generalizable inductive biases?



● Model architecture
● Learning algorithm
● Initialization
● Hyperparameters

Generalizing on a task requires both training data and inductive biases
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Training data can be traded-off with inductive bias
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Sample complexity quantifies the amount of data needed to generalize
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Inductive bias complexity quantifies the amount of inductive bias needed to generalize
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How to quantify the inductive bias is required to solve a task?
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● How much information does 
the inductive bias provide 
about correct hypothesis?

● Information content of 
inductive biases relates to the 
amount inductive bias shrinks 
the hypothesis space:
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Setting a reasonable hypothesis space
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● General hypothesis space:
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Inductive bias complexity scales exponentially with intrinsic input dimension
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● Task difficulty decreases linearly/logarithmically with training set size

● Task difficulty decreases logarithmically with desired error rate

● Task difficulty increases polynomially with max frequency (i.e. data resolution)

● Task difficulty increases exponentially with intrinsic data dimensionality

Max 
frequency



Quantifying difficulty of image classification benchmarks
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● Datasets of higher intrinsic dimensionality are more difficult

● Task difficulties are large: typical model classes provide high inductive bias

Difficulty to 
achieve SOTA 
accuracy



Harder datasets extract more inductive bias from a fixed architecture
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In RL, tasks with noisier observations require exponentially more 
inductive bias to generalize on
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Observations 
required to 
determine state
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Meta-learning tasks are dramatically more difficult than 
supervised learning
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● Meta-learning requires generalizing over a very high dimensional space

Difficulty to 
achieve SOTA 
accuracy



● Typical architectures encode vast 
amounts of inductive bias

● Higher intrinsic dimension tasks 
require more inductive bias

● Generalizing on a task requires 
both training data and inductive 
biases

● Task difficulty is information content 
of inductive biases required to 
solve a task

Conclusion
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