# Model-agnostic Measure of Generalization Difficulty

Akhilan Boopathy, Kevin Liu, Jaedong Hwang, Shu Ge, Asaad Mohammedsaleh, Ila Fiete





CENTER FOR Brains Minds+ Machines

#### Benchmarks drive new machine learning architectures



ImageNet



Atari



Large Language Corpora

### Benchmarks drive new machine learning architectures





Large-scale Convolutional Neural Networks





Deep Reinforcement Learning



Large Language Corpora

Large-scale Transformers

### What are good tasks/benchmarks?

Will the block tower fall if What is the shape of the object

**CLEVR** 

the top block is removed?

closest to the large cylinder?



ImageNet

How many blocks are on the

right of the three-level tower?



Atari

Are there more trees than

animals?



#### Large Language Corpora



#### Meta-world

• How can we evaluate the difficulty of these benchmarks? Which ones will encourage the development of more generalizable inductive biases?

Generalizing on a task requires both training data and inductive biases





Sample complexity quantifies the amount of data needed to generalize



Inductive bias complexity quantifies the amount of inductive bias needed to generalize



## How to quantify the inductive bias is required to solve a task?



- How much information does the inductive bias provide about correct hypothesis?
- Information content of inductive biases relates to the amount inductive bias shrinks the hypothesis space:



# Setting a reasonable hypothesis space

• General hypothesis space:

$$f(x; heta) = \sum_{\omega \in \Omega} heta_{\omega} \underbrace{u_{\omega}(x)}_{ ext{Orthogonal basis}}$$

Max frequency M



Inductive bias complexity scales exponentially with intrinsic input dimension



- Task difficulty decreases <u>linearly/logarithmically</u> with training set size
- Task difficulty decreases <u>logarithmically</u> with desired error rate
- Task difficulty increases <u>polynomially</u> with max frequency (i.e. data resolution)
- Task difficulty increases <u>exponentially</u> with intrinsic data dimensionality

# Quantifying difficulty of image classification benchmarks



- Datasets of higher intrinsic dimensionality are more difficult
- Task difficulties are large: typical model classes provide high inductive bias

#### Harder datasets extract more inductive bias from a fixed architecture











In RL, tasks with noisier observations require *exponentially* more inductive bias to generalize on



# Meta-learning tasks are dramatically more difficult than supervised learning



• Meta-learning requires generalizing over a very high dimensional space

# Conclusion

• Generalizing on a task requires both training data and inductive



 Task difficulty is information content of inductive biases required to solve a task



 Typical architectures encode vast amounts of inductive bias



Higher intrinsic dimension tasks
require more inductive bias

