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Benchmarks drive new machine learning architectures
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Benchmarks drive new machine learning architectures
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What are good tasks/benchmarks?

Large Language Corpora

!' . - H button press door open drawer close drawer open peg insert
LS a8 BB

How many blocks are on the Will the block tower fall if ~ What is the shape of the object Are ther mort es than
right of the three-lev ltwr the top block is removed?  closest to the large cylinder? ~ anima

ImageNet

pick place push reach

window open window close

CLEVR Meta-world

e How can we evaluate the difficulty of these benchmarks? Which ones will
encourage the development of more generalizable inductive biases?



Generalizing on a task requires both training data and inductive biases
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Training data can be traded-off with inductive bias
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Sample complexity quantifies the amount of data needed to generalize
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Inductive bias complexity quantifies the amount of inductive bias needed to generalize
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How to quantify the inductive bias is required to solve a task?
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How much information does
the inductive bias provide
about correct hypothesis?

Information content of
inductive biases relates to the
amount inductive bias shrinks
the hypothesis space:




Setting a reasonable hypothesis space

e General hypothesis space:

Discrete set of basis
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Inductive bias complexity scales exponentially with intrinsic input dimension
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e Task difficulty decreases linearly/logarithmically with training set size

e Task difficulty decreases logarithmically with desired error rate

e Task difficulty increases polynomially with max frequency (i.e. data resolution)

e Task difficulty increases exponentially with intrinsic data dimensionality
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Quantifying difficulty of image classification benchmarks
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e Datasets of higher intrinsic dimensionality are more difficult

e Task difficulties are large: typical model classes provide high inductive bias
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Harder datasets extract more inductive bias from a fixed architecture
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In RL, tasks with noisier observations require exponentially more

inductive bias to generalize on

Noisy Cartpole
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Meta-learning tasks are dramatically more difficult than
supervised learning
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e Meta-learning requires generalizing over a very high dimensional space
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Conclusion

e Generalizing on a task requires
both training data and inductive
biases A 1
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e Task difficulty is information content
of inductive biases required to
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Typical architectures encode vast
amounts of inductive bias

Higher intrinsic dimension tasks
require more inductive bias
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