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● Analogy:

Water flowing from source to sink
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● Directed Acyclic Graph
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Generate Objects Sequentially

→ Stochastic Policy
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Generative Model 
● Objects Generated Proportional to Reward
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● Flow Consistency Equations

● Trajectory Balance:  
○ Trajectory level flow matching
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SubTrajectory(𝜆) or SubTB(𝜆):
GFlowNet Objectives Unified 
& Extended
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● SubTrajectory (𝜆)

● Unifies Previous Objectives
○ Detailed Balance:
○ Trajectory Balance:

● Lower gradient variance
● Better stability and Faster convergence
● Wider set of applications



SubTB(𝜆): Experiments & Results



Experiments: SubTB (𝜆)

●  6 domains:
1. Hypergrid: Multi-dimensional grid
2. Small Molecule Synthesis: sequential generation of molecules from fixed 

graphs
3. Bit Sequence Generation: sequences of bits with fixed length
4. AMP: Antimicrobial Peptide sequence generation
5. GFP: Fluorescent Protein Generation - long sequences 
6. Inverse protein folding: Non-autoregressive sequence generation
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● Small-batch SubTB(𝜆) gradient is a good 
estimator of large-batch TB gradient.

● Despite its bias, the small-batch SubTB(𝜆) 
gradient estimates the full-batch TB gradient 
better than small-batch TB gradient.

● SubTB(𝜆) interpolates between the unbiased 
gradient estimates of TB and the biased 
gradient estimates of DB. 
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