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A Class of Nonconvex Problem

• Problem: we study a class of constrained nonconvex
optimization problems (NOTEARS) defined as follows:

min
Θ

Q(Θ) subject to h(W(Θ)) = 0

• Goal: We solve this class of problems and provide
optimality guarantees.
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Background



Problem: Learning Directed Acyclic Graph From Data

• The goal (DAG learning) is to recover the underlying DAG of
a structural equation model (SEM) from data. A
nonparametric SEM consists of a set of equations of the
form,

Xj = fj(X, zj), j = 1, . . . ,d

where each fj is nonparametric function, zj represents
noise.

• The graphical structure implied by (f1, . . . , fd) can be
represented by the following d× d weighted adjacency
matrix

W = W(f ) = (wij) wij = ‖∂ifj‖2

Indeed, such a graphical structure is a DAG.
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Example

• One of simple example is Linear SEM: Xj = W>
j X + zj, where

X = [X1, . . . , Xd] is data and W = [W1, . . . ,Wd] represents
the weighted adjacency matrix.

•

X1 X2 X3 X4


0.3 −0.2 0.4 0.9
0.9 1.1 0.3 −1.6
1.1 0.2 −0.4 0.6
...

...
...

...

estimate−−−−−→
X2

X3

X1

X4

• DAG learning is important in several fields, such as
economics, social science, genetics, and causal inference.
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Score-based approach

• Score-based methods searches for the (weighted)
adjacency matrix W that minimizes a given score Q that
measures how well W fits the observed data X. That is we
aim to solve

min
W

Q(W) s.t. W ∈ DAGs (Combinatorial Constraint)

The above problem is known to be NP-complete to
solve(Chickering 1996).
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A Continuous Non-convex Characterizations of DAGs

• Recent work (NOTEARS) by Zheng et al. (2018) has
replaced the combinatorial DAG constraint to a continuous
constraint via the smooth function
hexp(W) = Tr(eW◦W)− d. That is

min
W

Q(W) s.t. hexp(W) = 0

hexp(W) = 0 if and only if W is a DAG.
• More formulation about the continuous characterization
of DAGs has been proposed. Check Wei et al. (2020), Yu et
al. (2019), and Bello et al.(2022) for more formulas.

• hexp(W) is smooth nonconvex function.
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Topological sort

Definition(Topological sort)
Topological sort π is a a permutation on vertices,
Xπ(i) → Xπ(j) ⇒ i < j.

X2

X3

X1

X4 X3 comes before X2 and X1, X4
comes before X2, any order that is
consistent with it will be
topological sort, i.e. π = [3, 4, 2, 1]
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Property of Topological sort

• For any DAG, there exists at least one corresponding
topological sort π (maybe not unique).

• We call a graph G (resp. W) consistent with π if π is
topological sort of G (resp. W) and write this as G ∼ π

(resp. W ∼ π)
• Given a permutation π, we then have the following
order-constrained optimization problem:

min
W∼π

Q(W)

We denote the optimal solution by W∗
π .

• Basically, it is unconstrained optimization that can be
solved efficiently.
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Topological sort

• Equivalent formulation

W∗
π =argmin

W
Q(W)

s.t. Wπ(i),π(j) = 0,∀j ≤ i

•

π = [3, 1, 2] opt−−→ W∗
π

recover−−−−→
X2X3X1
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A Topological Sort-Based Algorithm
Informed by KKT Condition



An Useful Set

For any τ, ξ ≥ 0 and any W, define a set of pairs

Y(W, τ, ξ)
def
=

{
(i, j) | [∇h (|W|))]ij ≤ τ,

∥∥∥∥∂Q(W)

∂Wij

∥∥∥∥
1
> ξ

}
.

Theorem (Property of Y(W, τ, ξ))

• Y(W∗
π, 0, 0) = ∅ ⇒ W∗

π satisfies the KKT conditions. Under
the assumption Q is convex, W∗

π is a local minimal.
• Under some mild condition, Y(W∗

π, 0, 0) 6= ∅ for some
topological sort π, then

Q(W∗
πij
) < Q(W∗

π)

for every (i, j) ∈ Y(W∗
π, 0, 0), where πij is the topological

sort that is learned through a simple procedure.
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Implication of the Set

• In a word, Y(W∗
π, τ, ξ) provides information about whether

W∗
π is locally optimal and also identifies which new

topological sort πij could potentially improve the score.
• We replace Y(W∗

π, 0, 0) by Y(W∗
π, τ, ξ) where τ, ξ are

positive, to enlarge the searching space, and we can
design an algorithm based on set Y(W∗

π, τ, ξ).
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Algorithm

TOPO

• Initialize arbitrary sort π, get W∗
π .

• Define a candidate set of possible swaps by Y(W∗
π, τ, ξ)

• Choose the best swap from this set to obtain a new
topological sort; i.e., the swap that decreases the score Q
the most.

• Repeat until there is no sufficient improvement in the
score.
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Property of TOPO Algorithm

Theorem
Under some mild conditions, and Q is convex (resp.
non-convex). Then TOPO with arbitrary initial topological sort
π returns a local minimum (resp. KKT point) of problem,
where the score is decreased at each iteration. Moreover, the
solution at each iteration is also a local minimum. (resp. KKT
point)
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Why care about KKT/local optimal points?

• KKT conditions are indeed necessary conditions of
optimality, i.e. they are satisfied by all local minima. When
Q is convex, the KKT condition is also the sufficient
condition of optimality.

• Improving the solution of NOTEARS objective can lead to
better recovery of the underlying structure.
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Experiments

Linear Model

Method Metric d = 20 d = 40 d = 100

Golem-EV
KKT No No No
Loss 10.7± 0.12 40.7± 4.8 68.8± 3.9
SHD 11.4± 3.4 51.4± 28.3 145.2± 52.6

Notears
KKT No No No
Loss 11.9± 0.1 62.1± 8.8 73.1± 7.6
SHD 28.6± 3.2 129± 25.5 140.0± 30.1

Nofears
KKT Yes Yes Yes
Loss 11.5± 0.3 47.6± 1.6 61.2± 2.6
SHD 23.2± 4.5 69.8± 16.0 87.5± 19.2

Notears-Topo
KKT Yes Yes Yes
Loss 9.8± 0.1 38.4± 0.1 47.5± 0.1
SHD 0.4± 0.2 9.2± 0.8 14.2± 1.9

Random-Topo
KKT Yes Yes Yes
Loss 9.8± 0.1 38.4± 0.1 47.5± 0.1
SHD 0.4± 0.2 8.6± 0.9 16.3± 2.6

Table 1: Experiments on linear
DAGs on ER4 graphs.

Neural Networks

Method Metric d = 10 d = 20 d = 40

Notears-MLP
KKT No No No
Loss 7.2± 0.2 14.4± 0.3 28.5± 0.4
SHD 5.6± 0.7 29.1± 3.1 112.3± 20.2

Notears-Topo
KKT Yes Yes Yes
Loss 6.4± 0.1 11.6± 0.1 22.8± 0.6
SHD 2.7± 0.5 12.1 36.3± 20.4

True
KKT Yes Yes Yes
Loss 6.3± 0.1 12.2± 0.1 23.4± 0.4
SHD 2.1± 0.5 11.6± 0.6 36.1± 2.2

Table 2: Experiments on
Nonlinear Model with Neural
Network on ER4 graphs. Here
‘True’ means the solution W∗

π

using the underlying true
topological sort.
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