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A Class of Nonconvex Problem

- Problem: we study a class of constrained nonconvex
optimization problems (NOTEARS) defined as follows:

min Q(®©) subject to h(W(©)) =0

- Goal: We solve this class of problems and provide
optimality guarantees.



Background




Problem: Learning Directed Acyclic Graph From Data

- The goal (DAG learning) is to recover the underlying DAG of
a structural equation model (SEM) from data. A
nonparametric SEM consists of a set of equations of the
form,

X =fi(X,z), j=1,....d
where each f; is nonparametric function, z; represents
noise.
- The graphical structure implied by (f1,...,fq) can be

represented by the following d x d weighted adjacency
matrix

W=W(f) = (wy) wy= ol

Indeed, such a graphical structure is a DAG.



- One of simple example is Linear SEM: X; = W/-TX +z;, where
X =[X,...,Xq] is data and W = [W;, ..., Wy] represents
the weighted adjacency matrix.
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- DAG learning is important in several fields, such as
economics, social science, genetics, and causal inference.



Score-based approach

- Score-based methods searches for the (weighted)
adjacency matrix W that minimizes a given score Q that
measures how well W fits the observed data X. That is we
aim to solve

mmi/n Q(W) st. W e DAGs (Combinatorial Constraint)

The above problem is known to be NP-complete to
solve(Chickering 1996).



A Continuous Non-convex Characterizations of DAGs

- Recent work (NOTEARS) by Zheng et al. (2018) has
replaced the combinatorial DAG constraint to a continuous
constraint via the smooth function
hexp(W) = Tr(e¥°W) — d. That is

hexp(W) = 0 if and only if W is a DAG.

- More formulation about the continuous characterization
of DAGs has been proposed. Check Wei et al. (2020), Yu et
al. (2019), and Bello et al.(2022) for more formulas.

* hexp(W) is smooth nonconvex function.



Topological sort

Definition(Topological sort)

Topological sort 7 is a a permutation on vertices,
Xﬂ(,’) — Xﬂ.(}') =< j

X3 comes before X; and Xj, X,
comes before X,, any order that is
consistent with it will be

topological sort, i.e. m = [3,4,2,1]




Property of Topological sort

- For any DAG, there exists at least one corresponding
topological sort = (maybe not unique).

- We call a graph G (resp. W) consistent with = if 7 is
topological sort of G (resp. W) and write thisas G ~ «
(resp. W ~ )

- Given a permutation , we then have the following
order-constrained optimization problem:

s aW)

We denote the optimal solution by WZ.

- Basically, it is unconstrained optimization that can be
solved efficiently.



Topological sort

- Equivalent formulation
W2 =arg minQ(W)
w
st W7r(i),7r(j) =0,Vj<i

we
m=1[3,1,2] 25 fecover, .s . a‘



A Topological Sort-Based Algorithm
Informed by KKT Condition




An Useful Set
For any 7,£ > 0 and any W, define a set of pairs
oQ(W
aw)|| - 5}_
]
Theorem (Property of Y(W, 7, €))
- Y(WZX,0,0) = 0 = W satisfies the KKT conditions. Under

the assumption Q is convex, W is a local minimal.

- Under some mild condition, Y(Wz,0,0) # 0 for some
topological sort «, then

def

YW, r,§) =

{(i,/') [ VAW <7,

a(w;,) < a(w;)

for every (i,j) € Y(Wx,0,0), where 7 is the topological

sort that is learned through a simple procedure.
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Implication of the Set

- Inaword, Y(W%, 1,€&) provides information about whether
W is locally optimal and also identifies which new
topological sort m;; could potentially improve the score.

- We replace Y(W%,0,0) by (W, 7,£) where 7,€ are
positive, to enlarge the searching space, and we can
design an algorithm based on set Y(WZ, 7, £).

n



TOPO
- Initialize arbitrary sort m, get W.
- Define a candidate set of possible swaps by Y(W%, 7, &)

- Choose the best swap from this set to obtain a new
topological sort; i.e., the swap that decreases the score Q
the most.

- Repeat until there is no sufficient improvement in the
score.
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Property of TOPO Algorithm

Theorem

Under some mild conditions, and Q is convex (resp.
non-convex). Then with arbitrary initial topological sort
7 returns a local minimum (resp. KKT point) of problem,
where the score is decreased at each iteration. Moreover, the
solution at each iteration is also a local minimum. (resp. KKT
point)
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Why care about KKT/local optimal points?

- KKT conditions are indeed necessary conditions of
optimality, i.e. they are satisfied by all local minima. When
Q is convex, the KKT condition is also the sufficient
condition of optimality.

- Improving the solution of NOTEARS objective can lead to
better recovery of the underlying structure.
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Experiments

Linear Model

Method Metric d=20 d =140 d =100
KKT No No No
GOLEM-EV Loss 10.7+£0.12 40.7+4.8 68.8 + 3.9
SHD M4+3.4 51.4+283 145.2+52.6
KKT No No No
NOTEARS Loss 11.9+01 621+88 73.1+7.6
SHD 28.6+£3.2 1294255 140.0£30.1
KKT Yes Yes Yes
NOFEARS Loss 1MN5+£03 47.6+1.6 61.2+£2.6
SHD 23.24+45 69.8+16.0 875+19.2
KKT Yes Yes Yes
NOTEARS-TOPO  Loss 9.8+0.1 38.4+0.1 475+0.1
SHD 0.4+0.2 92+08 142419
KKT Yes Yes Yes
RANDOM-TOPO Loss 9.8+0.1 38.4+0.1 47.5+0.1
SHD 0.4+0.2 86+09 16.3+£2.6

Table 1: Experiments on linear

DAGs on ER4 graphs.

Neural Networks

Method Metric  d=10 d=20 d =40
KKT No No No
NOTEARS-MLP Lloss 72+02 144403 285+0.4
SHD 56+0.7 291+£31 1123+20.2
KKT Yes Yes Yes
NOTEARS-TOPO  loss 6.4+01 11.6+0.1 22.8+0.6
SHD 27+05 121 36.3+20.4
KKT Yes Yes Yes
TRUE Loss 63401 122+0.1 23.4+0.4
SHD 21+£05 1.6+£0.6 36.1+22

Table 2: Experiments on
Nonlinear Model with Neural
Network on ER4 graphs. Here
‘True’ means the solution W
using the underlying true

topological sort.
15



	Background
	A Topological Sort-Based Algorithm Informed by KKT Condition

