Optimizing NOTEARS Objectives via Topological Swaps

Chang Deng¹ Kevin Bello^{1 2} Bryon Aragram¹ Pradeep Ravikumar² June 29, 2023

¹Booth School of Business, University of Chicago, ²Machine Learning Department, Carnegie Mello University

The University of Chicago Booth School of Business

Carnegie Mellon University School of Computer Science • Problem: we study a class of constrained nonconvex optimization problems (NOTEARS) defined as follows:

 $\min_{\Theta} Q(\Theta) \text{ subject to } h(W(\Theta)) = 0$

• Goal: We solve this class of problems and provide optimality guarantees.

Background

Problem: Learning Directed Acyclic Graph From Data

• The goal (DAG learning) is to recover the underlying DAG of a structural equation model (SEM) from data. A nonparametric SEM consists of a set of equations of the form,

$$X_j = f_j(X, z_j), \quad j = 1, \dots, d$$

where each f_j is nonparametric function, z_j represents noise.

• The graphical structure implied by (f_1, \ldots, f_d) can be represented by the following $d \times d$ weighted adjacency matrix

$$W = W(f) = (W_{ij}) \quad W_{ij} = \|\partial_i f_j\|_2$$

Indeed, such a graphical structure is a DAG.

Example

• One of simple example is Linear SEM: $X_j = W_j^{\top} X + z_j$, where $X = [X_1, \dots, X_d]$ is data and $W = [W_1, \dots, W_d]$ represents the weighted adjacency matrix.

• DAG learning is important in several fields, such as economics, social science, genetics, and causal inference.

• Score-based methods searches for the (weighted) adjacency matrix *W* that minimizes a given score *Q* that measures how well *W* fits the observed data **X**. That is we aim to solve

 $\min_{W} Q(W) \quad \text{s.t.} \quad W \in \text{DAGs} (Combinatorial Constraint})$

The above problem is known to be *NP-complete* to solve(Chickering 1996).

• Recent work (**NOTEARS**) by Zheng et al. (2018) has replaced the combinatorial DAG constraint to a continuous constraint via the smooth function $h_{\exp}(W) = \operatorname{Tr}(e^{W \circ W}) - d$. That is

$$\min_{W} Q(W) \qquad \text{s.t. } h_{\exp}(W) = 0$$

 $h_{\exp}(W) = 0$ if and only if W is a DAG.

- More formulation about the continuous characterization of DAGs has been proposed. Check Wei et al. (2020), Yu et al. (2019), and Bello et al.(2022) for more formulas.
- $h_{\exp}(W)$ is smooth nonconvex function.

Definition(Topological sort)

Topological sort π is a a permutation on vertices, $X_{\pi(i)} \rightarrow X_{\pi(j)} \Rightarrow i < j.$

 X_3 comes before X_2 and X_1 , X_4 comes before X_2 , any order that is consistent with it will be topological sort, i.e. $\pi = [3, 4, 2, 1]$

Property of Topological sort

- For any DAG, there exists at least one corresponding topological sort π (maybe not unique).
- We call a graph G (resp. W) consistent with π if π is topological sort of G (resp. W) and write this as G ~ π (resp. W ~ π)
- Given a permutation π , we then have the following order-constrained optimization problem:

 $\min_{W\sim\pi}Q(W)$

We denote the optimal solution by W_{π}^* .

• Basically, it is unconstrained optimization that can be solved efficiently.

٠

• Equivalent formulation

$$W_{\pi}^{*} = \arg \min_{W} Q(W)$$

s.t. $W_{\pi(i),\pi(j)} = 0, \forall j \le i$

$$\pi = [3, 1, 2] \xrightarrow{\text{opt}} W_{\pi}^* \xrightarrow{\text{recover}} (X_1) \xleftarrow{} (X_3) \xrightarrow{} (X_2) \quad \textcircled{\baselineskip}$$

A Topological Sort-Based Algorithm Informed by KKT Condition

An Useful Set

For any
$$au, \xi \ge 0$$
 and any W , define a set of pairs
$$\mathcal{Y}(W, \tau, \xi) \stackrel{\text{def}}{=} \left\{ (i, j) \mid [\nabla h(|W|))]_{ij} \le \tau, \left\| \frac{\partial Q(W)}{\partial W_{ij}} \right\|_1 > \xi \right\}.$$

Theorem (Property of $\mathcal{Y}(W, \tau, \xi)$)

- $\mathcal{Y}(W_{\pi}^*, 0, 0) = \emptyset \Rightarrow W_{\pi}^*$ satisfies the KKT conditions. Under the assumption Q is convex, W_{π}^* is a local minimal.
- Under some mild condition, $\mathcal{Y}(W_{\pi}^*, 0, 0) \neq \emptyset$ for some topological sort π , then

$$Q(W^*_{\pi_{ij}}) < Q(W^*_{\pi})$$

for every $(i,j) \in \mathcal{Y}(W_{\pi}^*, 0, 0)$, where π_{ij} is the topological sort that is learned through a simple procedure.

- In a word, $\mathcal{Y}(W_{\pi}^*, \tau, \xi)$ provides information about whether W_{π}^* is locally optimal and also identifies which new topological sort π_{ij} could potentially improve the score.
- We replace $\mathcal{Y}(W_{\pi}^*, 0, 0)$ by $\mathcal{Y}(W_{\pi}^*, \tau, \xi)$ where τ, ξ are positive, to enlarge the searching space, and we can design an algorithm based on set $\mathcal{Y}(W_{\pi}^*, \tau, \xi)$.

торо

- Initialize arbitrary sort π , get W_{π}^* .
- Define a candidate set of possible swaps by $\mathcal{Y}(\mathit{W}^*_{\pi}, au, \xi)$
- Choose the best swap from this set to obtain a new topological sort; i.e., the swap that decreases the score *Q* the most.
- Repeat until there is no sufficient improvement in the score.

Theorem

Under some mild conditions, and Q is convex (resp. non-convex). Then TOPO with arbitrary initial topological sort π returns a local minimum (resp. KKT point) of problem, where the score is decreased at each iteration. Moreover, the solution at each iteration is also a local minimum. (resp. KKT point)

Why care about KKT/local optimal points?

- KKT conditions are indeed necessary conditions of optimality, i.e. they are satisfied by all local minima. When *Q* is convex, the KKT condition is also the sufficient condition of optimality.
- Improving the solution of **NOTEARS** objective can lead to better recovery of the underlying structure.

Linear Model

Neural Networks

Method	Metric	<i>d</i> = 20	d = 40	d = 100
GOLEM-EV	KKT	No	No	No
	Loss	10.7 ± 0.12	40.7 ± 4.8	68.8 ± 3.9
	SHD	11.4 ± 3.4	51.4 ± 28.3	145.2 ± 52.6
NOTEARS	KKT	No	No	No
	Loss	11.9 ± 0.1	62.1 ± 8.8	73.1 ± 7.6
	SHD	28.6 ± 3.2	129 ± 25.5	140.0 ± 30.1
Nofears	KKT	Yes	Yes	Yes
	Loss	11.5 ± 0.3	47.6 ± 1.6	61.2 ± 2.6
	SHD	23.2 ± 4.5	69.8 ± 16.0	87.5 ± 19.2
NOTEARS-TOPO	KKT	Yes	Yes	Yes
	Loss	$\textbf{9.8} \pm \textbf{0.1}$	$\textbf{38.4} \pm \textbf{0.1}$	$\textbf{47.5} \pm \textbf{0.1}$
	SHD	$\textbf{0.4} \pm \textbf{0.2}$	9.2 ± 0.8	$\textbf{14.2} \pm \textbf{1.9}$
Random-Topo	KKT	Yes	Yes	Yes
	Loss	$\textbf{9.8} \pm \textbf{0.1}$	$\textbf{38.4} \pm \textbf{0.1}$	$\textbf{47.5} \pm \textbf{0.1}$
	SHD	$\textbf{0.4} \pm \textbf{0.2}$	$\textbf{8.6} \pm \textbf{0.9}$	16.3 ± 2.6

Table 1: Experiments on linearDAGs on ER4 graphs.

Method	Metric	<i>d</i> = 10	<i>d</i> = 20	d = 40
NOTEARS-MLP	KKT	No	No	No
	Loss	7.2 ± 0.2	14.4 ± 0.3	28.5 ± 0.4
	SHD	5.6 ± 0.7	29.1 ± 3.1	112.3 ± 20.2
Notears-Topo	KKT	Yes	Yes	Yes
	Loss	$\textbf{6.4} \pm \textbf{0.1}$	$\textbf{11.6} \pm \textbf{0.1}$	$\textbf{22.8} \pm \textbf{0.6}$
	SHD	$\textbf{2.7}\pm\textbf{0.5}$	12.1	$\textbf{36.3} \pm \textbf{20.4}$
True	KKT	Yes	Yes	Yes
	Loss	6.3 ± 0.1	12.2 ± 0.1	23.4 ± 0.4
	SHD	2.1 ± 0.5	11.6 ± 0.6	36.1 ± 2.2

Table 2: Experiments onNonlinear Model with NeuralNetwork on ER4 graphs. Here'True' means the solution W_{π}^* using the underlying truetopological sort.