Learning Physical Models that Can Respect Conservation Laws

Derek Hansen¹, Danielle C. Maddix², Shima Alizadeh², Gaurav Gupta², Michael W. Mahoney³

¹Dept. of Statistics, University of Michigan
 ² AWS AI Labs
 ³ Amazon Supply Chain Optimization Technologies

July 23, 2023

1/12

Differential Form for Conservation Laws

$$\left. \begin{array}{l} \mathcal{F}u(t,x) = 0, \ x \in \Omega, \\ u(0,x) = u_0(x), \ x \in \Omega, \\ u(t,x) = g(t,x), \ x \in \partial\Omega, \end{array} \right\}, \forall \ t \ge 0,$$

Conservation Law

$$\mathcal{F}u = u_t + \nabla \cdot F(u)$$

Aerodynamics

Ocean & Climate

Reservoir Modeling

æ

シペペ 2/12

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Integral Form of Conservation Laws

$$u_{t} + \nabla \cdot F(u) = 0$$

$$\int_{\Omega} u(t, x) d\Omega = \int_{\Omega} u_{0}(x) d\Omega - \int_{0}^{t} \int_{\Gamma} F(u) \cdot n d\Gamma dt$$

$$\underbrace{\int_{\Omega} u(t, x) d\Omega}_{\mathcal{G}u(t, x)} = \underbrace{\int_{\Omega} u_{0}(x) d\Omega + \int_{0}^{t} (F_{\text{in}} - F_{\text{out}}) dt}_{b(t)}$$

$$F_{in} = F(u, t, x_0)|_{u=g(t, x_0)}$$

$$F_{out} = F(u, t, x_N)|_{u=g(t, x_N)}$$

$$\Omega = [x_0, x_N]$$

1D

୬**୯**୯ 3/12

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Algorithm **PROBCONSERV**

- 1: **Input:** Constraint matrix G, constraint value b, non-zero noise σ_G and input points $(t_1, x_1), \dots, (t_N, x_N)$
- 2: **Step 1**: Calculate black-box prediction over output grid: $\mu, \Sigma = f_{\theta}((t_1, x_1), \dots, (t_N, x_N); D)$
- 3: **Step 2**: Calculate $\tilde{\mu}$ and $\tilde{\Sigma}$ according to Equation 1.
- 4: Output: $\tilde{\mu}, \tilde{\Sigma}$

$$\tilde{\mu} = \mu - \Sigma G^{T} (\sigma_{G}^{2} I + G \Sigma G^{T})^{-1} (G \mu - b)$$

$$\tilde{\Sigma} = \Sigma - \Sigma G^{T} (\sigma_{G}^{2} I + G \Sigma G^{T})^{-1} G \Sigma$$
(1)

・ * E * * E * の R * 4/12

 $b = Gu + \sigma_G \epsilon$

Schematic for the instantiation of our framework ${\rm ProbConserv}$ with the ${\rm ANP}$ (${\rm ProbConserv-ANP}$) as the data-driven black box model in Step 1

∃ nac 5/12

イロト イヨト イヨト イヨト

GPME as a Parameterized Family of Equations

$$u_t = \nabla \cdot (k(u)\nabla u)$$

Illustration of the "easy-to-hard" paradigm for the GPME

・ロト ・ 同ト ・ ヨト ・ ヨト

6/12

æ

Diffusion Equation: Violation of Conservation of Mass

True mass is zero over time: zero net flux from domain boundaries

シペペ 7/12

æ

★ E ► ★ E ►

"Easy" problem: uncertainty is relatively homoscedastic

8/12

(4) (3) (4) (3)

Diffusion Equation: Error Metrics

	CE	LL	MSE
ANP	4.68 (0.10)	2.72 (0.02)	1.71 (0.41)
SoftC-ANP	3.47 (0.17)	2.40 (0.02)	2.24 (0.78)
HARDC-ANP	0 (0.00)	3.08 (0.04)	1.37 (0.33)
PROBCONSERV-ANP	0 (0.00)	2.74 (0.02)	1.55 (0.33)

Mean and standard error for CE $\times 10^{-3}$ (should be zero), LL (higher is better), MSE $\times 10^{-4}$ (lower is better) over $n_{\text{test}} = 50$ runs with variable diffusivity parameter $k \in [1, 5]$ and test-time parameter value k = 1

シュペ 9/12

э.

イロト イヨト イヨト イヨト

Stefan Equation: Solution Profile and Downstream Task

(a) Solution profile

(b) Posterior of the shock position

"Hard" problem: Uncertainty is highly heteroscedastic with largest magnitude near the shock location

シペペ 10/12

* ヨト * ヨト

æ

	CE	LL	MSE
ANP	-1.30 (0.01)	3.53 (0.00)	5.38 (0.01)
SoftC-ANP	-1.72 (0.04)	3.57 (0.01)	6.81 (0.15)
HARDC-ANP	0 (0.00)	2.33 (0.06)	5.18 (0.02)
PROBCONSERV-ANP	0 (0.00)	3.56 (0.00)	1.89 (0.01)

Mean and standard error for CE $\times 10^{-2}$ (should be zero), LL (higher is better), and MSE $\times 10^{-3}$ (lower is better) over $n_{\text{test}} = 50$ runs at time t = 0.05 with variable parameter $u^* \in [0.55, 0.7]$ and test-time parameter value $u^* = 0.6$

3X decrease in MSE

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆 の < 11/12</p>

Thank you!

Hansen, D., Maddix, D.C., Alizadeh, S., Gupta, G., Mahoney, M.W., Learning Physical Models that Can Respect Conservation Laws," *Proceedings of the* 40th *International Conference on Machine Learning*, PMLR 202, 2023.

Code: https://github.com/amazon-science/probconserv

Email: dmmaddix@amazon.com

ッヘベ 12/12

イロト イロト イヨト イヨト