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Differential Form for Conservation Laws

Fu(t, x) = 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = g(t, x), x ∈ ∂Ω,

 ,∀ t ≥ 0,

Conservation Law
Fu = ut +∇ · F (u)

Aerodynamics
Ocean & Climate

Reservoir Modeling
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Integral Form of Conservation Laws

ut +∇ · F (u) = 0∫
Ω
u(t, x)dΩ =

∫
Ω
u0(x)dΩ−

∫ t

0

∫
Γ
F (u) · ndΓdt

1D ∫
Ω
u(t, x)dΩ︸ ︷︷ ︸
Gu(t,x)

=

∫
Ω
u0(x)dΩ+

∫ t

0
(Fin − Fout)dt︸ ︷︷ ︸

b(t)

Fin = F (u, t, x0)|u=g(t,x0)

Fout = F (u, t, xN)|u=g(t,xN)

Ω = [x0, xN ]
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ProbConserv Algorithm

Algorithm ProbConserv

1: Input: Constraint matrix G , constraint value b, non-zero noise σG and input
points (t1, x1), . . . (tN , xN)

2: Step 1: Calculate black-box prediction over output grid:
µ,Σ = fθ((t1, x1), . . . (tN , xN);D)

3: Step 2: Calculate µ̃ and Σ̃ according to Equation 1.
4: Output: µ̃, Σ̃

µ̃ = µ− ΣGT (σ2
G I + GΣGT )−1(Gµ− b)

Σ̃ = Σ− ΣGT (σ2
G I + GΣGT )−1GΣ

(1)

b = Gu + σG ϵ
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Instantiation of Framework ProbConserv-ANP

 
... Attentive Neural

Process

 
... 

Step1 Step 2

Probabilistic
constraint

Schematic for the instantiation of our framework ProbConserv with the
ANP (ProbConserv-ANP) as the data-driven black box model in Step 1
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GPME as a Parameterized Family of Equations

ut = ∇ · (k(u)∇u)

0 2 4 6
x

1.0

0.5

0.0

0.5

1.0

u(
t,

x)

t

Solution profile u as a function as x
t = 0
t = 0.5
t = 1.0
t = 2.0

(a) Diffusion equation k = 1

0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50

0.75

1.00

1.25

u(
t,

x)

t

Solution profile u as a function as x
t = 0
t = 0.3
t = 0.5
t = 0.7

(b) PME k(u) = u3

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
t,

x) u

t

Solution profile u as a function as x
t = 0.01
t = 0.08
t = 0.2
t = 0.5

(c) Stefan discont. k(u)

Illustration of the “easy-to-hard” paradigm for the GPME
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Diffusion Equation: Violation of Conservation of Mass
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True mass is zero over time: zero net flux from domain boundaries
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Diffusion Equation: Solution Profiles and UQ
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“Easy” problem: uncertainty is relatively homoscedastic

40th International Conference on Machine Learning (ICML) Learning Physical Models that Can Respect Conservation Laws



9/12

Diffusion Equation: Error Metrics

CE LL MSE

ANP 4.68 (0.10) 2.72 (0.02) 1.71 (0.41)

SoftC-ANP 3.47 (0.17) 2.40 (0.02) 2.24 (0.78)

HardC-ANP 0 (0.00) 3.08 (0.04) 1.37 (0.33)

ProbConserv-ANP 0 (0.00) 2.74 (0.02) 1.55 (0.33)

Mean and standard error for CE ×10−3 (should be zero), LL (higher is better),
MSE ×10−4 (lower is better) over ntest = 50 runs with variable diffusivity parameter
k ∈ [1, 5] and test-time parameter value k = 1
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Stefan Equation: Solution Profile and Downstream Task
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(b) Posterior of the shock position

“Hard” problem: Uncertainty is highly heteroscedastic with largest magnitude near the
shock location
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Stefan Equation: Error Metrics

CE LL MSE

ANP -1.30 (0.01) 3.53 (0.00) 5.38 (0.01)

SoftC-ANP -1.72 (0.04) 3.57 (0.01) 6.81 (0.15)

HardC-ANP 0 (0.00) 2.33 (0.06) 5.18 (0.02)

ProbConserv-ANP 0 (0.00) 3.56 (0.00) 1.89 (0.01)

Mean and standard error for CE ×10−2 (should be zero), LL (higher is better), and
MSE ×10−3 (lower is better) over ntest = 50 runs at time t = 0.05 with variable
parameter u⋆ ∈ [0.55, 0.7] and test-time parameter value u⋆ = 0.6

3X decrease in MSE
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