

Optimizing DDPM Sampling with Shortcut Fine-Tuning

Ying Fan

University of Wisconsin-Madison

Kangwook Lee

• Diffusion models find paths from pure noise to natural images

• The training objective of DDPM [1] is *behavior cloning*: - Given a fixed Markov forward process q

- The training objective of DDPM [1] is *behavior cloning*:
 - Given a fixed Markov forward process q -
 - Compute the reverse Markov process of q

- The training objective of DDPM [1] is *behavior cloning*:
 - Given a fixed Markov forward process q -
 - Compute the reverse Markov process of q-
 - Train a model θ to follow the reverse process

- The training objective of DDPM [1] is *behavior cloning*:
 - Given a fixed Markov forward process q -
 - Compute the reverse Markov process of q
 - Train a model θ to follow the reverse process

$$J = \mathbb{E}_{q} \left[\sum_{t=0}^{T-1} D_{KL}(q(x_{t} | x_{t+1}, x_{0}), p_{t}^{\theta}(x_{t} | x_{t+1})) \right]$$

Match all marginal distributions: $p_{\theta}(x_t) \approx q(x_t)$

- The training objective of DDPM [1] is *behavior cloning*:
 - Given a fixed Markov forward process q
 - Compute the reverse Markov process of q
 - Train a model θ to follow the reverse process

What if we do *online learning* to find alternative paths/shortcuts?

[1] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840-6851.

Behavior cloning is not always the best way

From Behavior Cloning to Online Learning

- For BC, we assume the behavior policy is from the "expert"
 - No "reward"/"cost" is needed
 - Just imitating the behavior trajectories is enough

From Behavior Cloning to Online Learning

- For BC, we assume the behavior policy is from the "expert"
 - No "reward"/"cost" is needed
 - Just imitating the behavior trajectories is enough
- For online learning, we need feedback from the environment (as reward/cost)
- Where does the feedback come from?

From Behavior Cloning to Online Learning

- For online learning, we need feedback from the environment (as reward/cost)
- Where does the feedback come from?
 - Recall the task: generative modeling
 - Recall GAN [2] training:
 - discrepancy between the synthetic & real distributions
 - We can train a discriminator to compute some metric that describes the - The generator is updated to minimize this metric

[2] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. *Communications of the ACM*, 63(11), 139-144.

- We formulate the diffusion model as a multi-step generator

• We can train a *discriminator* model based on the generated images & the true images

- We formulate the diffusion model as a multi-step generator

• Our objective function: Integral Probability Metric (IPM)

$$\Phi(p_0^{\theta}, q_0) = \sup_{\substack{x_0 \sim p_0^{\theta} \\ \alpha \in \mathscr{A}}} \mathbb{E}_{x_0 \sim p_0^{\theta}}$$

• We can train a *discriminator* model based on the generated images & the true images

 $\int_{0}^{\theta} [f_{\alpha}(x_{0})] - \mathbb{E}_{x_{0} \sim q_{0}}[f_{\alpha}(x_{0})]$

• How to update the multi-step generator with discriminator signals?

• How to update the multi-step generator with discriminator signals?

- Multi-step generator as an RNN?
 - It requires $T \times$ original memory usage
 - $T \times$ multiplication of gradients could results in instability in training
- Is there an alternative way?

ge d results in instability in training

Online Learning: Policy Gradient Equivalence

• Recall our objective function: Integral Probability Metric (IPM)

$$\Phi(p_0^{\theta}, q_0) = \sup_{\substack{x_0 \sim p_0^{\theta} \\ \alpha \in \mathscr{A}}} \mathbb{E}_{x_0 \sim p_0^{\theta}}$$

• Optimizing the sampling process with some discriminator = policy gradient under regularity assumptions:

$$\nabla_{\theta} \Phi(p_0^{\theta}, q_0) = \mathbb{E}_{\substack{p_{x_{0:T}}^{\theta} \\ \text{``Cumulative cost''}}} \left[f_{\alpha^*(p_0^{\theta}, q_0)}(x_0) \nabla_{\theta} \log \sum_{t=0}^{T-1} p_t^{\theta}(x_t \,|\, x_{t+1}) \right]$$

- RL formulation:
 - Discriminator as a cost function at the end of trajectory and 0 elsewhere
 - Diffusion model as a policy, the next state to be identical to the action
 - Then it is equivalent to policy gradient!
 - We can also train a value function for variance reduction

 $\operatorname{e}[f_{\alpha}(x_0)] - \mathbb{E}_{x_0 \sim q_0}[f_{\alpha}(x_0)]$

Online Learning: Towards Monotonic Improvements

$$\nabla_{\theta} \Phi(p_0^{\theta}, q_0) = \mathbb{E}_{p_{x_{0:T}}^{\theta}} \left[f_{\alpha^*(p_0^{\theta}, q_0)}(x_0) \nabla_{\theta} \log \sum_{t=0}^{T-1} p_t^{\theta}(x_t | x_{t+1}) \right]$$

The cost is dependent on current θ

The COSLIS dependent on Current D

- - Can we still can get a descent in the objective?
 - Yes, if the change is small enough!

• Is there a way to reuse the previous discriminator even if we update the generator?

Online Learning: Towards Monotonic Improvements

$$\nabla_{\theta} \Phi(p_0^{\theta}, q_0) = \mathbb{E}_{p_{x_{0:T}}^{\theta}} \left[f_{\alpha^*(p_0^{\theta}, q_0)}(x_0) \nabla_{\theta} \log \sum_{t=0}^{T-1} p_t^{\theta}(x_t | x_{t+1}) \right]$$

The cost is dependent on current θ

- - Can we still can get a descent in the objective?
 - Yes, if the change is small enough!
- Under Lipschitz assumptions, we have

$$\Phi(p_0^{\theta'}, q_0) \le g(p_0^{\theta'}, f_{\alpha^*(p_0^{\theta}, q_0)}, q_0)$$

As a surrogate function

- Similar to TRPO [3] but not the same
- To optimize the surrogate function, one can simply clip the gradient during update

[3] Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region policy optimization. In International conference on machine *learning* (pp. 1889-1897). PMLR.

• Is there a way to reuse the previous discriminator even if we update the generator?

Online Learning: Regularizing the Discriminator

- - WGAN [4]
 - We only need the scalar value to include both high&low costs
 - We can afford a wider class of discriminators to provide more signals! (*No need of gradient penalty*)

[4] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In *International conference on machine learning* (pp. 214-223). PMLR.

• The discriminator needs to provide meaningful gradients during the generator updates The generator only uses the scalar value of the discriminator, not its gradient like

Online Learning: Combining the Pipeline

• The training pipeline: **SFT-PG** (*shortcut fine-tuning with policy gradient*)

For discriminator steps: -

- Generate samples from the generator
- Train the value function and also regularize the discriminator

For generator steps: -

- Perform policy gradient update with gradient clipping
- Continue the loop till convergence

- Train the discriminator to maximize the discrepancy between real&fake images

Experimental Results

- Initialize the diffusion model (T = 1000) with subsampling T' = 10
- Optimize the model with our algorithm to improve the model
- Results:

(a) CIFAR10, Initialization

(b) CIFAR10, SFT-PG (B)

FID	•
	•

Method	CIFAR-10 (32 × 32)			
DDPM	34.76			
FastDPM	29.43			
Analytic-DPM	22.94			
SN-DDPM	16.33			
SFT-PG (B)	2.28			

) with subsampling T' = 10to improve the model

(c) CelebA, Initialization

(d) CelebA, SFT-PG (B)

CelebA (64 × 64)
36.69
28.98
28.99
20.60
2.01

Experimental Results

- Initialize the diffusion model (T = 1000) with subsampling T' = 10
- Optimize the model with our algorithm to improve the model
- Results:

⁽a) CIFAR10, Initialization

(b) CIFAR10, SFT-PG (B)

FID:	Method (DDPM, stochastic)	NFE	FID	Method (DDIM, deterministic)	NFE	FID
	DDPM	10	34.76	DDIM	10	17.33
	SN-DDPM	10	16.33	DPM-solver	10	4.70
	SFT-PG*	10	2.28			
	SFT-PG*	8	2.64	Progressive distillation*	8	2.57

) with subsampling T' = 10 to improve the model

(c) CelebA, Initialization

(d) CelebA, SFT-PG (B)

Summary

- We propose a surrogate function of IPM for monotonic improvements
- We propose a gradient-free regularization for the critic

https://github.com/UW-Madison-Lee-Lab/SFT-PG

• We propose a novel algorithm, using policy gradient to fine-tuning diffusion models w.r.t. IPM, which first utilizes reinforcement learning (RL) methods to train diffusion models

• Our fine-tuning can improve DDPM sampling to reduce the number of sampling steps

Follow-up Works

- text-image space

 - Training Diffusion Models with Reinforcement Learning [6]

[5] Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C., ... & Lee, K. (2023). DPOK: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models. arXiv preprint arXiv:2305.16381. [6] Black, K., Janner, M., Du, Y., Kostrikov, I., & Levine, S. (2023). Training diffusion models with reinforcement learning. arXiv preprint arXiv:2305.13301.

• Follow-up works: Fine-tuning text-to-image models using some rewards defined on the

DPOK: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models [5]

Thank you!

