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Large Language Models (LLMs) Are Powerful

and more…
2

ChatBots Scientific Discovery

Software Development Disability AidTransformer Architecture

Attention Is All You Need (Vaswani et al., 2017)



The Scaling Law and Emergent Abilities

• Scaling up language models can give us unpredictable capabilities (emergent abilities).

3
Scaling Laws for Neural Language Models (Kaplan et al., 2020) 
Emergent Abilities of Large Language Models (Wei et al., 2022)



Model Compression for LLMs is Important
• LLM sizes and computation are increasing exponentially. Model Compression with: 

• Quantization (SmoothQuant) <= today’s focus: training-free, model-in & model-out. 

• Token pruning (SpAtten) 

• Neural architecture search (HAT, Lite-Transformer)
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Quantization Can Reduce Deployment Costs
• Serving LLMs is extremely expensive. 

• E.g., serving a 175B GPT-3 model at least requires: 

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs 

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs
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MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Linear Quantization
An affine mapping of integers to real numbers r = S(q − Z)

6
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference  [Jacob et al., CVPR 2018]
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Existing Quantization Method is Slow or Inaccurate
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• Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Naive but efficient 
quantization methods will destroy the accuracy. 

• The accuracy-preserving baseline, LLM.int8() uses FP16 to represent outliers, which needs runtime 
outlier detection, scattering and gathering. It is slower than FP16 inference.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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SmoothQuant: Accurate and Efficient  
Post-Training Quantization for LLMs
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• We propose SmoothQuant, an accurate and efficient post-training-quantization (PTQ) method to enable 8-bit 
weight, 8-bit activation (W8A8) quantization for LLMs. 

• Since weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by 
migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.



Review the Quantization Difficulty of LLMs
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• Activations are harder to quantize than weights 

• Outliers make activation quantization difficult 

• Outliers persist in fixed channels
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LLMs are difficult to quantize because: 



Review the Quantization Difficulty of LLMs
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LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

GLM-130b: An open bilingual pre-trained model (Zeng et al., 2022)


• Activations are harder to quantize than weights 
 Previous work has shown quantizing the weights of LLMs with INT8 or even INT4 doesn’t degrade accuracy.



Review the Quantization Difficulty of LLMs
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Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)


LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

• Outliers make activation quantization difficult 
 The scale of outliers is ~100x larger than most of the activation values.  
 If we use INT8 quantization, most values will be zeroed out.

Activation (Original)

A
bs

ol
ut

e 
Va

lu
e

70

Hard to quantize



Review the Quantization Difficulty of LLMs

12Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)

• Outliers persist in fixed channels 
 Fixed channels have outliers, and the outlier channels are persistently large.
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Quantization Schemes
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Among different activation quantization schemes, only 
per-channel quantization preserves the accuracy, but 
it is not compatible with INT8 GEMM kernels.

Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)



Review the Quantization Difficulty of LLMs
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• Activations are harder to quantize than weights 

• Outliers make activation quantization difficult 

• Outliers persist in fixed channels
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We can smooth the outlier channels in activations by 
migrating their magnitudes into the following weights!



Activation Smoothing
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Activation Smoothing
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Activation Smoothing

17
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Activation Smoothing
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Y = X̂Ŵ
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3. Inference (deployed model):

*

At runtime, the activations are smooth 
and easy to quantize



Ablation Study on the Migration Strength α
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• Migration strength  controls the amount of quantization difficulty migrated from activations to weights.  

• A suitable migration strength  (sweet spot) makes both activations and weights easy to quantize.  

• If the  is too large, weights will be hard to quantize; if too small, activations will be hard to quantize.

α

α

α

sj = max( |Xj | )α / max( |Wj | )1−α, j = 1,2,…, Ci Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ



System Implementation
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• SmoothQuant’s precision mapping for a Transformer block.  

• All compute-intensive operators, such as linear layers and 
batched matrix multiplications (BMMs) use INT8 arithmetic.
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• Quantization setting of the baselines and SmoothQuant. All 
weight and activations use INT8 representations unless specified.  

• We implement three efficiency levels of quantization settings for 
SmoothQuant. The efficiency improves from O1 to O3.
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SmoothQuant is Accurate and Efficient

21
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning. 

• SmoothQuant can both accelerate inference and halve the memory footprint.
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Scaling Up: 530B Model Within a Single Node
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SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU 
numbers by half at a similar latency, which allows serving the 530B model within a single node.

MT-NLG 530B Accuracy

MT-NLG 530B Efficiency



SmoothQuant on Instruction-Tuned LLMs
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SmoothQuant works well on instruction-tuned LLM, the backbones of recent chat bots.



Song Han: Slide Title https://efficientml.ai

SmoothQuant
Advancing new efficient open model LLaMA

- LLaMA (and its successors like Alpaca) are popular  
open-source LLMs, which introduced SwishGLU, making activation quantization even harder


- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

24
W8A8 per token

PIQA↑ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 78.24% 79.05% 80.96% 81.72%

SmoothQuant 78.24% 78.84% 80.74% 81.50%

Wikitext↓ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.69 10.31 7.71 6.68

SmoothQuant

int8
fp16

https://efficientml.ai
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SmoothQuant
Going smaller: W4A4 (FP4)

• Can we further push the frontier?

• We evaluate the W4A4 quantization

• Setting: FP4 data type with a group size of 64; FP16 accumulator and FP16 scaling factor


- Red: ppl degrade > 0.5, Green: ppl degrade < 0.5. SmoothQuant helps most of the time. 
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Conclusion

• Paper: https://arxiv.org/abs/2211.10438 

• Code:  https://github.com/mit-han-lab/smoothquant 

• We propose SmoothQuant, a turn-key solution to enable accurate W8A8 quantization 
for large language models. 

• SmoothQuant is accurate and efficient on existing hardware. We can implement 
SmoothQuant with off-the-shelf kernels to achieve high speedup and memory saving. 

• Integration 
• NVIDIA: FasterTransformer 

• Intel: Neural Compressor 

• OpenNMT: CTranslate2
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https://arxiv.org/abs/2211.10438
https://github.com/mit-han-lab/smoothquant
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/intel/neural-compressor
https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html

