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Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector

• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost

• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)

• Hidden information can be made visible
— e.g. x′(t), x′′(t)

850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)
850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)
850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

1s
tD

er
iv

at
iv

e
of

A
bs

or
ba

nc
e

high-fat
low-fat

2/9



Functional Data Analysis (FDA)1 Functional Data Analysis
• Example: Classify meat (low-fat vs. high-fat) based on near infrared absorbance
spectrum (measured at 100 wavelengths between 850 to 1050 nm)

• For each meat sample, we have an observation x = (x1, . . . , x100)

• Does this vector representation make sense?

• In general there is no relation betweencoordinates of a vector
• Information about smoothness in a vectorrepresentation is lost
• Instead: Consider observations as functions x(t)
• Hidden information can be made visible

— e.g. x′(t), x′′(t)
850 875 900 925 950 975 1000 1025 1050

Wavelength in nm

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

2n
d

D
er

iv
at

iv
e

of
A

bs
or

ba
nc

e high-fat
low-fat

2/9



EEG Data1 Functional Data Analysis
• Electroencephalography (EEG) is amethod to measure brain activity

— Generally (really) noisy— Signal of interest is only weak, has acomplex pattern and might occur atany time in a given window

• Methods that analyse EEG data shouldbe shift invariant
• Neural networks can be shift invariant
• In general, neural networks representdata as vectors/matrices
• Combine deep learning with FDA
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Functional Neurons2 Functional Neural Networks

• The output of an artificial

functional

neuron is an“activated” linear combination of its

functional

inputs

• Functional neurons reduce the size of thenetwork and the dimension of its input
— Consider 4 seconds of an 8-channel EEG withsample frequency 250Hz— Vector representation: 8000 numbers— Functional representation: 8 functions

• Other layers can be extended too, e.g.convolutional or pooling layers
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Architecture2 Functional Neural Networks
• Smoothing: Local linear estimation
• Normalization: Standardizing perchannel
• FuncConv: N layers with M filters

— e.g., N = 1,M = 20

• FuncDense: One neuron per class

Smoothing
Normalization
FuncConv ×N

FuncDense

Functional Input

Prediction
5/9



Empirical Results2 Functional Neural Networks
• Datasets

— 2 FDA benchmarks— 1 EEG benchmark— 2 simulated datasets
• Methods: Neural networks & FDAmethods
• Multiple repetitions with random splits
• FNNs achieved state of the art forbenchmark datasets

Model Accuracy Recall Precision
Tecator DatasetCNN 73.56 71.77 81.32MLP 85.30 83.80 82.31FNN(10) 100.00 100.00 100.00FNN(20) 100.00 100.00 100.00Berrendero et al. 99.53 - -
Phoneme DatasetCNN 83.73 83.83 85.01MLP 79.95 80.55 80.05FNN(10) 91.53 91.42 91.56FNN(20) 91.53 91.52 91.72Berrendero et al. 81.14 - -
BCI Competition IV Dataset 2AEEGNet 51.81 40.21 44.75FNN(20) 55.43 44.98 48.31FNN(40) 56.29 45.95 49.466/9



More Details2 Functional Neural Networks

Functional Neural NetworksShift invariant models for functional data with applications to EEG classification
• Poster: https://icml.cc/virtual/2023/poster/25224
• Paper: https://openreview.net/pdf?id=vvcJCbxxbp
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Functional Neural Networks
Thank You!
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