

Functional Neural Networks

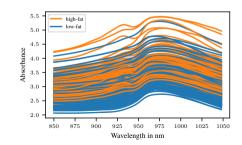
Shift invariant models for functional data with applications to EEG classification

Florian Heinrichs, Mavin Heim, Corinna Weber

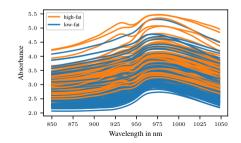
SNAP GmbH

July 2023

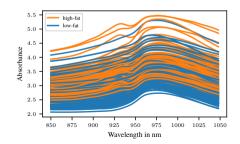
• Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)



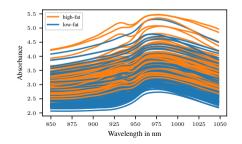
- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$



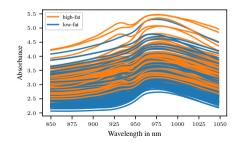
- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?



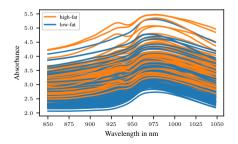
- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector



- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector
- Information about smoothness in a vector representation is lost



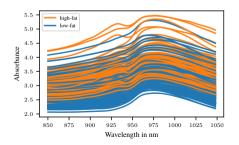
- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector
- Information about smoothness in a vector representation is lost
- **Instead:** Consider observations as functions *x*(*t*)



1 Functional Data Analysis

- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector
- Information about smoothness in a vector representation is lost
- Instead: Consider observations as functions x(t)
- Hidden information can be made visible

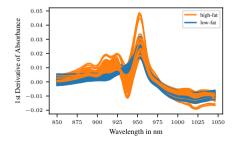
- e.g. x'(t), x''(t)



1 Functional Data Analysis

- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector
- Information about smoothness in a vector representation is lost
- **Instead:** Consider observations as functions x(t)
- Hidden information can be made visible

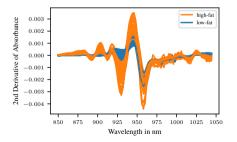
- e.g. x'(t), x''(t)



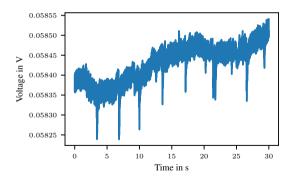
1 Functional Data Analysis

- Example: Classify meat (low-fat vs. high-fat) based on *near infrared absorbance spectrum* (measured at 100 wavelengths between 850 to 1050 nm)
- For each meat sample, we have an observation $x = (x_1, \dots, x_{100})$
- Does this vector representation make sense?
- In general there is no relation between coordinates of a vector
- Information about smoothness in a vector representation is lost
- Instead: Consider observations as functions x(t)
- Hidden information can be made visible

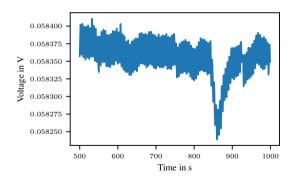
- e.g. x'(t), x''(t)



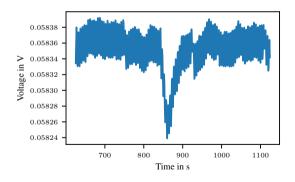
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window



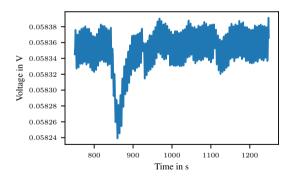
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window



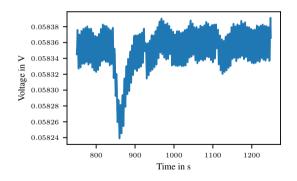
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window



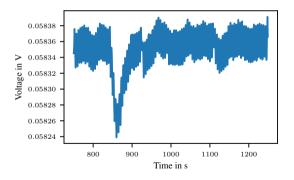
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window



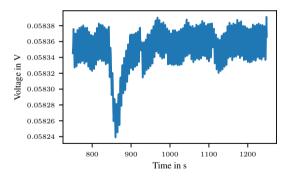
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window
- Methods that analyse EEG data should be shift invariant



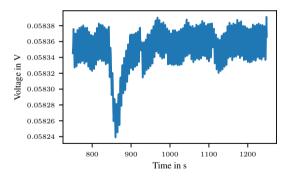
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window
- Methods that analyse EEG data should be shift invariant
- Neural networks can be shift invariant



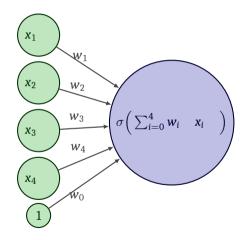
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window
- Methods that analyse EEG data should be shift invariant
- Neural networks can be shift invariant
- In general, neural networks represent data as vectors/matrices



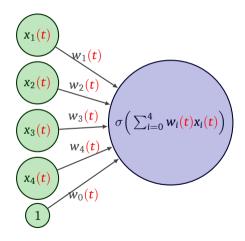
- Electroencephalography (EEG) is a method to measure brain activity
 - Generally (really) noisy
 - Signal of interest is only weak, has a complex pattern and might occur at any time in a given window
- Methods that analyse EEG data should be shift invariant
- Neural networks can be shift invariant
- In general, neural networks represent data as vectors/matrices
- Combine deep learning with FDA



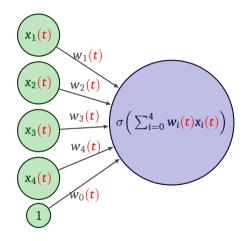
• The output of an artificial neuron is an "activated" linear combination of its inputs



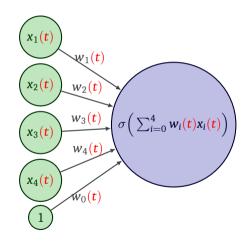
• The output of an artificial functional neuron is an "activated" linear combination of its functional inputs



- The output of an artificial functional neuron is an "activated" linear combination of its functional inputs
- Functional neurons reduce the size of the network and the dimension of its input
 - Consider 4 seconds of an 8-channel EEG with sample frequency 250Hz
 - Vector representation: 8000 numbers
 - Functional representation: 8 functions

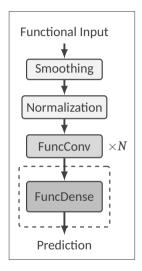


- The output of an artificial functional neuron is an "activated" linear combination of its functional inputs
- Functional neurons reduce the size of the network and the dimension of its input
 - Consider 4 seconds of an 8-channel EEG with sample frequency 250Hz
 - Vector representation: 8000 numbers
 - Functional representation: 8 functions
- Other layers can be extended too, e.g. convolutional or pooling layers



Architecture 2 Functional Neural Networks

- Smoothing: Local linear estimation
- Normalization: Standardizing per channel
- FuncConv: *N* layers with *M* filters
 - e.g., N = 1, M = 20
- FuncDense: One neuron per class



Empirical Results 2 Functional Neural Networks

2 Functional Neural Netwo

- Datasets
 - 2 FDA benchmarks
 - 1 EEG benchmark
 - 2 simulated datasets
- Methods: Neural networks & FDA methods
- Multiple repetitions with random splits
- FNNs achieved state of the art for benchmark datasets

Model	Accuracy	Recall	Precision
Tecator Dataset			
CNN	73.56	71.77	81.32
MLP	85.30	83.80	82.31
FNN(10)	100.00	100.00	100.00
FNN(20)	100.00	100.00	100.00
Berrendero et al.	99.53	-	-
Phoneme Dataset			
CNN	83.73	83.83	85.01
MLP	79.95	80.55	80.05
FNN(10)	91.53	91.42	91.56
FNN(20)	91.53	91.52	91.72
Berrendero et al.	81.14	-	-
BCI Competition IV Dataset 2A			
EEGNet	51.81	40.21	44.75
FNN(20)	55.43	44.98	48.31
FNN(40)	56.29	45.95	49.46

Functional Neural Networks

Shift invariant models for functional data with applications to EEG classification

- Poster: https://icml.cc/virtual/2023/poster/25224
- Paper: https://openreview.net/pdf?id=vvcJCbxxbp

Literature 2 Euroctional Neural Networks

- Berrendero, J. R., A. Cuevas, and J. L. Torrecilla (2016).
 The mrmr variable selection method: a comparative study for functional data.
 Journal of Statistical Computation and Simulation 86(5), 891–907.
- Hastie, T., A. Buja, and R. Tibshirani (1995). Penalized discriminant analysis. The Annals of Statistics 23(1), 73–102.

 Tangermann, M., K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G. Mueller-Putz, et al. (2012).
 Review of the BCI competition IV.
 Frontiers in neuroscience, 55.

Thodberg, H. H. (2015).

Tecator meat sample dataset. statlib datasets archive.

Functional Neural Networks Thank You!