

Pruning via Sparsity-indexed ODE: A Continuous Sparsity Viewpoint

Zhanfeng Mo and Haosen Shi and Sinno Jialin Pan

ICML 2023

Neural Pruning

• Goals: compress large neural network to

a target sparsity level by pruning model weights, with a minimal performance drop.

• How: minimize model loss, with a

sparsity constraint.

$$\min_{\mathbf{m}\in\{0,1\}^d} \mathcal{E}(\mathbf{m}\odot\boldsymbol{\theta}^*), \text{ s.t.} \|\mathbf{m}\|_0 = d'$$

Neural Pruning

- $\boldsymbol{\theta}^* \in \mathbf{R}^d$: reference (pretrained) model.
- $m \in \{0,1\}^d : 0-1 \text{ mask.}$
- d' < d: target parameter budget.
- **Sparsity**: $1 |m|_0/d$.
- $\mathcal{E}(\cdot):\mathbf{R}^d\mapsto\mathbf{R}_+$, model loss.
- m_t : the **optimal mask** of sparsity t.

 $\min_{\mathbf{m}\in\{0,1\}^d} \mathcal{E}(\mathbf{m}\odot\boldsymbol{\theta}^*), \text{ s.t. } \|\mathbf{m}\|_0 = d'$

Limitations of Existing Methods

$$\min_{\mathbf{m}\in\{0,1\}^d} \mathcal{E}(\mathbf{m}\odot\boldsymbol{\theta}^*), \text{ s.t. } \|\mathbf{m}\|_0 = d'$$

Method	Pros	Cons
Score-based	cheap & fast	biased due to locality
Regularization-based	differentiable	numerically instable
Sparse-training	better performance	biased & slow

• Finding $m_{1-d'/d}^*$ directly is hard due to the sparsity and irregularity!

Ease Neural Pruning with a Hint

- Finding $m_{1-d'/d}^*$ directly is hard due to the sparsity and irregularity!
- Q: what if we know a **hint**?
- A: travel from a 1/d denser optimal mask may help!
- The denser optimal mask enable us to **preserve optimality** with **a few alteration.**

$$\mathbf{m}_{t+\Delta t} - \mathbf{m}_t = F(\mathbf{m}_t)\Delta t$$

One-step Evolution of Optimal Mask

- Q: what is the dynamic of $t \mapsto m_t$?
- Q: how m_t evolves for an infinitesimal increase in sparsity?

- 1. Sparsity *t* is not continuous.
- 2. What is the one-step evolution $F(\cdot)$?

Polarized Soft Neural Pruning

- Q: how m_t evolves for an **infinitesimal** increase in sparsity?
- 1. <u>Sparsity *t* is not continuous.</u>
- 2. What is the one-step evolution $F(\cdot)$?

Solution:

- Generalize mask *m* and sparsity *t* to be continuous-valued by a soft sparsity measure *G*(·): R^d → [0,1].
- Polarize the soft mask m to be **nearly-binary** via a polarizer $P_{\varepsilon}(\cdot)$: $\mathbf{R}^d \mapsto ([0,1] \setminus (\varepsilon, 1 - \varepsilon))^d$.

 $\min_{\mathbf{m} \in \{0,1\}^d} \mathcal{E}(\mathbf{m} \odot \boldsymbol{\theta}^*)$
s.t. $\|\mathbf{m}\|_0 = d'$

 $\min_{\mathbf{m}\in\mathbb{R}^d}\mathcal{E}_{\varepsilon}(\mathbf{m})\triangleq\mathcal{E}(\mathcal{P}_{\varepsilon}(\mathbf{m})\odot\boldsymbol{\theta}^*)$

s.t.
$$G(\mathbf{m}) = t$$
,

One-step Evolution of Optimal Mask

- Q: how m_t evolves for an **infinitesimal increase** in sparsity?
- 1. Sparsity *t* is not continuous.
- 2. What is the one-step evolution $F(\cdot)$?

Solution:

- Localize around the hint m_t and solve $\delta_t \coloneqq m_{t+\Lambda t} m_t$.
- Solve δ_t from the localized problem with an **explicit solution.**

 $\min_{\mathbf{m}\in\mathbb{R}^d}\mathcal{E}_{\varepsilon}(\mathbf{m})\triangleq\mathcal{E}(\mathcal{P}_{\varepsilon}(\mathbf{m})\odot\boldsymbol{\theta}^*)$ s.t. $G(\mathbf{m}) = t$, **Localization** trick $\min_{\boldsymbol{\delta} \in \mathbb{R}^d} \nabla \mathcal{E}_{\varepsilon}(\mathbf{m}_{t+\Delta t})^{\top} \boldsymbol{\delta},$ s.t. $\nabla G(\mathbf{m}_{t+\Delta t})^{\top} \boldsymbol{\delta} = -\Delta t$ $\|\boldsymbol{\delta}\| \leqslant r_t \Delta t$ Localization radius

Explicit One-step Evolution of Optimal Mask

 $\mathbf{m}_{t+\Delta t} - \mathbf{m}_t = F(\mathbf{m}_t)\Delta t$ $abla \mathcal{E}_{arepsilon}(\mathbf{m}_t)$ \mathbf{m}_t Γ_t $\boldsymbol{\delta}_t$ $\nabla G(\mathbf{m}_t)$ $\Gamma_{t+\Delta t}$ $\mathbf{m}_{t+\Delta t}$

 $\min_{\boldsymbol{\delta} \in \mathbb{R}^d} \nabla \mathcal{E}_{\varepsilon}(\mathbf{m}_{t+\Delta t})^{\top} \boldsymbol{\delta},$ s.t. $\nabla G(\mathbf{m}_{t+\Delta t})^{\top} \boldsymbol{\delta} = -\Delta t$ $\|\boldsymbol{\delta}\| \leqslant r_t \Delta t$ $\boldsymbol{\delta}_t = F(\mathbf{m}_{t+\Delta t})\Delta t$ $F(\mathbf{m}) \triangleq \begin{cases} \mathbf{g}/\|\mathbf{g}\|^2, \text{ if } \|\mathbf{g}\|\|\mathbf{e}\| = |\mathbf{g}^\top \mathbf{e}|^2, \\ x\mathbf{e} + y\mathbf{g}, \text{ else,} \end{cases}$ $x \triangleq \sqrt{((r^2 - 1)/((\|\mathbf{g}\| \|\mathbf{e}\|)^2 - (\mathbf{g}^\top \mathbf{e})^2))},$ $y \triangleq (1 - \mathbf{g}^\top \mathbf{e} x) / \|\mathbf{g}\|^2,$

Pruning via Sparsity-indexed ODE (SpODE)

- In intuition: SpODE guides us towards the sparsity increase direction with a minimal performance drop.
- In theory: solving $m_{1-d'/d} \Leftrightarrow$ evaluating the optimal mask dynamic $t \mapsto m_t$ at t = 1 - d'/d.
- Now we can evaluate $m_{1-d'/d}$ via SpODE discretization!

$$\mathbf{m}_{t+\Delta t} - \mathbf{m}_{t} = F(\mathbf{m}_{t})\Delta t$$

$$\Delta t \rightarrow 0$$

$$\mathbf{d}\mathbf{m}_{t} = F(\mathbf{m}_{t})\mathrm{d}t, \ t \in [0, 1 - d'/d]$$

$$\mathbf{m}_{0} \triangleq \mathbf{1}$$

$$\mathbf{d}t_{0}$$

How Sparsity-indexed ODE works?

: One-step discretization of SpODE.

One-shot performance on CIFAR-10 / 100

One-shot Structured Pruning

Figure 3. Results of one-shot pruning on CIFAR-10/100 dataset. The x-axis is the sparsity and the y-axis is the top-1 accuracy of the tuned sparse model. The horizontal dash line represents the performance of the unpruned model θ^* .

One-shot performance on Tiny-ImageNet

	Sparsity	Mag	SNIP	SynFlow	GraSP	PSO (ours)
ResNet-50 (67.06)	90% / 72%	60.51 / 63.40	57.62 / 64.26	56.09 / 63.78	52.78 / 59.14	63.47 / 63.60
	93% / 80%	57.18 / 62.84	53.91 / 63.03	54.79 / 63.07	49.16 / 57.21	59.37 / 63.37
	95% / 86%	56.64 / 61.36	54.33 / 61.77	53.85 / 61.37	43.95 / 57.00	61.20 / 62.73
	96.5% / 90%	53.42 / 58.98	53.87 / 56.16	50.33 / 58.45	32.42 / 54.76	57.61 / 61.63
	98% / 93%	51.90 / 56.81	52.94 / 58.07	41.00 / 57.23	10.56 / 53.99	53.82 / 59.62
VGG19-bn (63.47)	90% / 72%	62.32 / 59.58	61.66 / 59.27	0.50 / 0.50	43.73 / 56.84	62.67 / 60.37
	93% / 80%	61.65 / 58.33	60.22 / 58.01	0.50 / 0.50	43.52 / 55.51	62.05 / 59.08
	95% / 86%	61.74 / 57.34	56.08 / 55.75	0.50 / 0.50	42.86 / 50.90	61.54 / 57.08
	96.5% / 90%	60.46 / 54.99	46.54 / 52.38	0.50 / 0.50	42.37 / 46.16	60.60 / 55.22
	98% / 93%	53.26 / 49.82	23.33 / 46.75	0.50 / 0.50	39.42 / 41.06	57.63 / 50.65
WRN-34 (64.74)	90% / 72%	61.59 / 60.23	61.43 / 60.32	57.87 / 60.44	53.37 / 59.85	62.36 / 61.11
	93% / 80%	61.11 / 59.35	60.16 / 59.28	57.57 / 59.61	52.75 / 57.13	61.17 / 59.91
	95% / 86%	59.97 / 58.30	51.31 / 58.14	50.11 / 58.20	49.67 / 55.30	60.14 / 58.38
	96.5% / 90%	58.98 / 57.25	56.45 / 55.65	54.32 / 56.23	49.67 / 53.11	58.75 / 57.28
	98% / 93%	56.39 / 55.40	54.60 / 54.12	50.42 / 52.03	47.17 / 51.62	57.54 / 57.03

Table 2. Comparison results of one-shot Unstructured / Structured Pruning on Tiny-ImageNet. The numbers in the parentheses are the performance of the unpruned model.

Iterative Performance on ImageNet

ResNet-50	Unpruned Acc.	Sparisty	Final Acc.
STR (Kusupati et al., 2020)	77.01%	87.70%	74.73%
WoodFisher (Singh & Alistarh, 2020)	77.01%	90.00%	75.21%
Powerprop (Schwarz et al., 2021)	76.80%	90.00%	74.40%
ProbMask (Zhou et al., 2021)	77.01%	90.00%	74.68%
PSO (ours)	77.01%	90.00%	75.10%

Table 5. Iterative PSO achieves either better or comparable performance than the state-of-the-art baselines on ImageNet. The experiment follows the same settings of (Kusupati et al., 2020).

Exhibits implicit mask regrowing

- Score-based methods are **biased** since they **can NOT regrow**.
- # regrowing $(t, t + \Delta t) = \#$ masks exist at $t + \Delta t$ but absent at t.

Conclusions

- Sparsity-indexed ODE (SpODE) illuminates the **evolution of optimal masks** as the sparsity level increases continuously.
- SpODE enables effective pruning by **traveling along the path of optimal masks**.
- Pruning via SpODE achieves the state-of-the-art performance on various pruning settings and datasets.
- SpODE allows for **implicit mask regrowing**, making it more robust in high sparsity regimes.

Thank you! Q&A