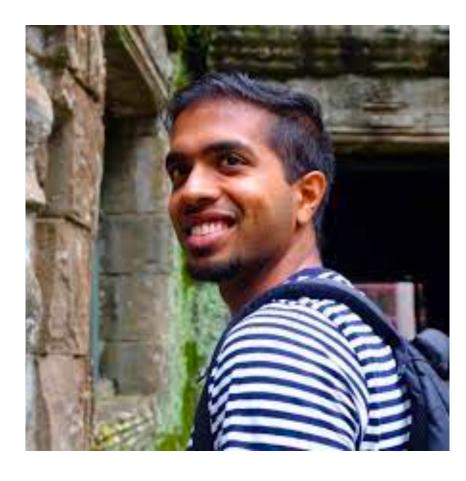
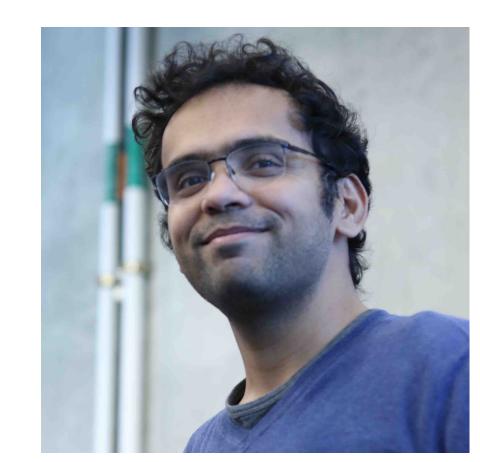
The Virtues of Laziness in Model-based RL



Anirudh Vemula

Yuda Song

Aarti Singh

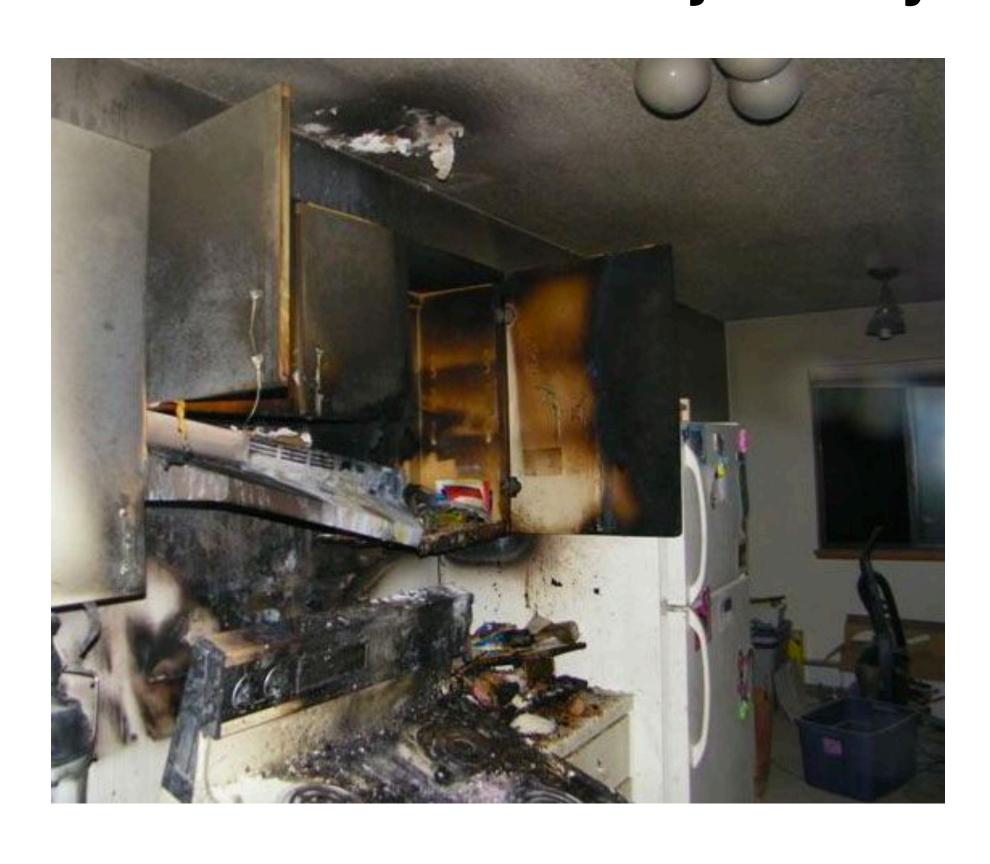


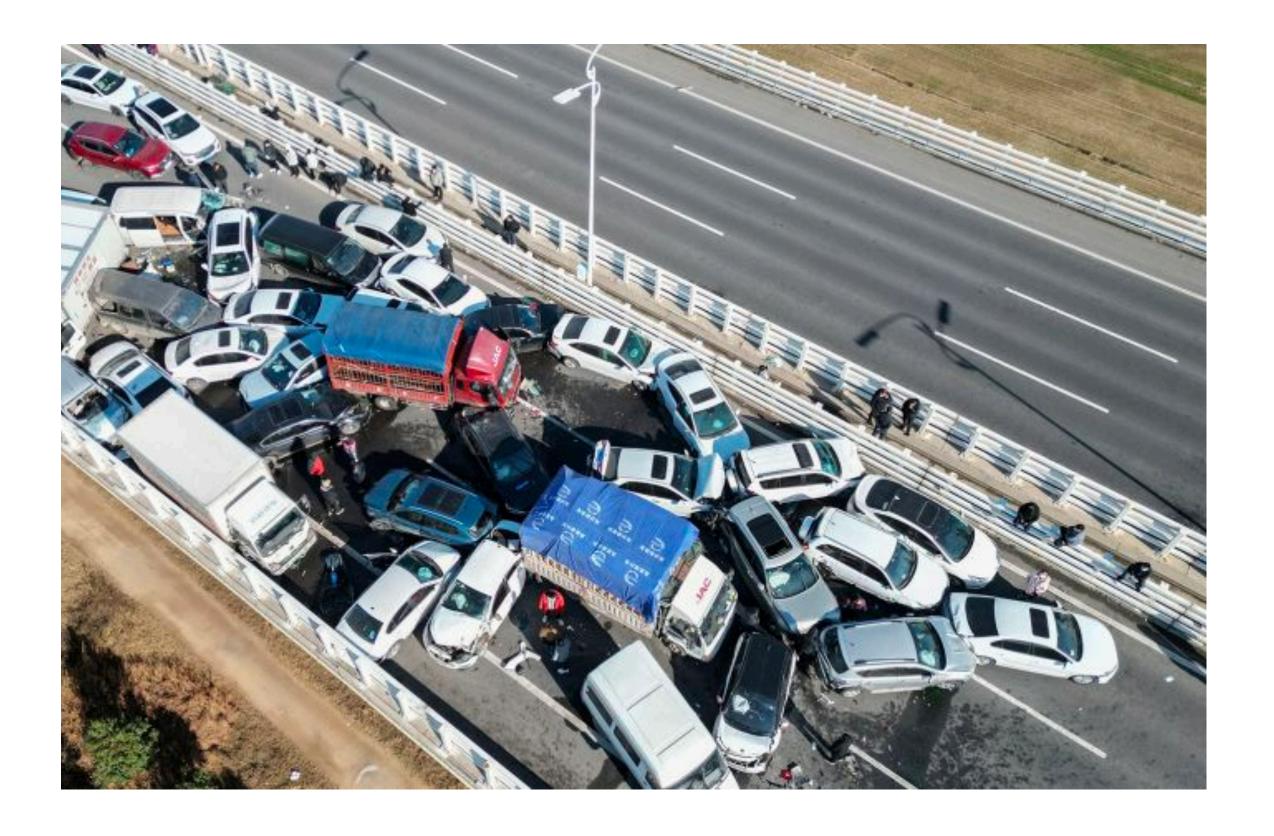
Drew Bagnell Sanjiban Choudhury

Why Model?

Models are necessary

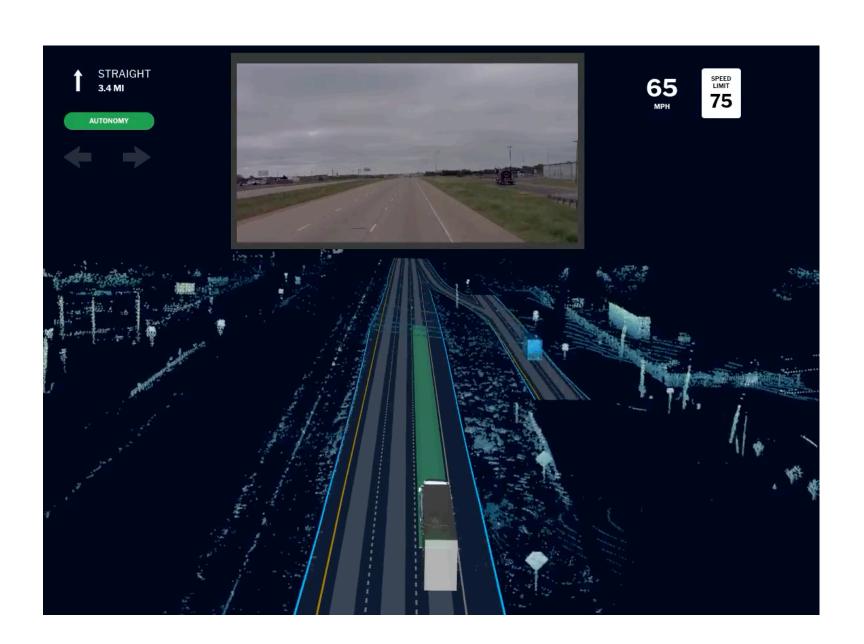
Robots can't just try out random actions in the world!





Models are necessary

We invested heavily in simulators for helicopters and self-driving to verify behaviors before deployment



Models work in theory

Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal

Alekh Agarwal Microsoft

alekha@microsoft.com

Sham Kakade University of Washington

sham@cs.washington.edu

Lin F. Yang
University of California, Los Angeles
linyang@ee.ucla.edu

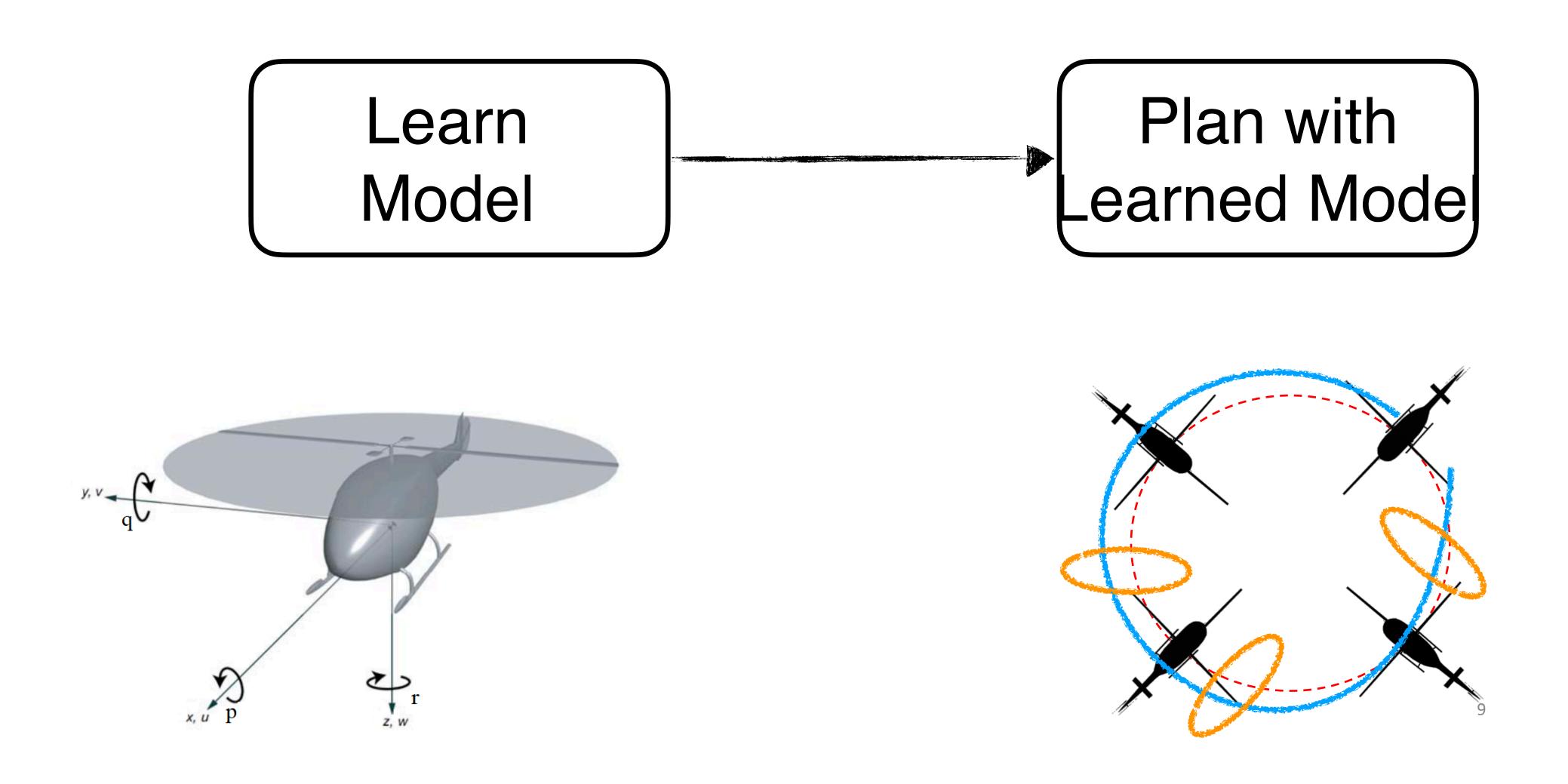
April 7, 2020

Models work in practice

Hafner et al. 2023

Learning Models.

(Early work in Model Based RL by Pieter Abeel et al. 2010 https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html)



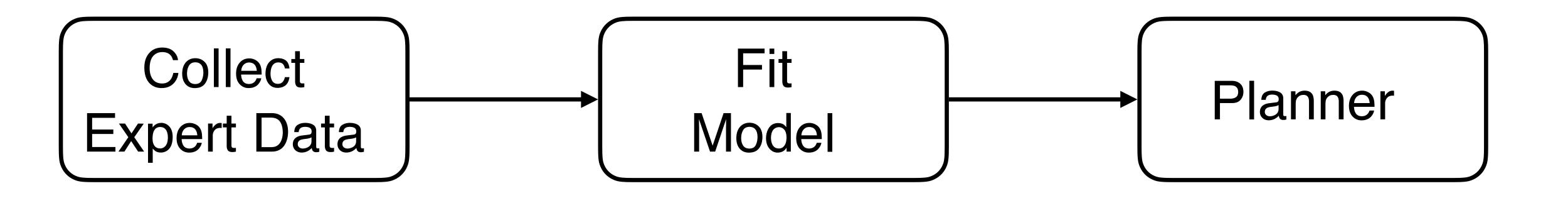
Least Squares Fit

ILQR

Strategy

Train a model on state actions visited by the expert!

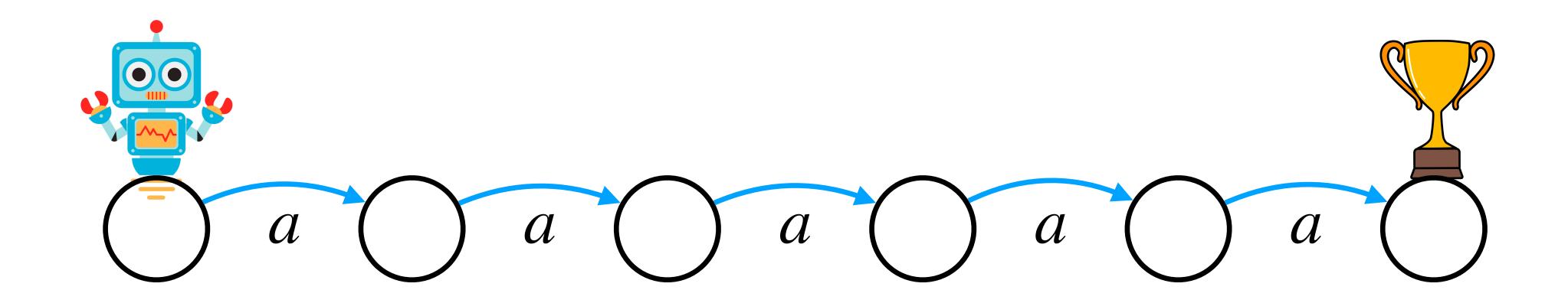
Model Based RL v1.0



If I perfectly fit a model (i.e. training error zero), this should work, right?

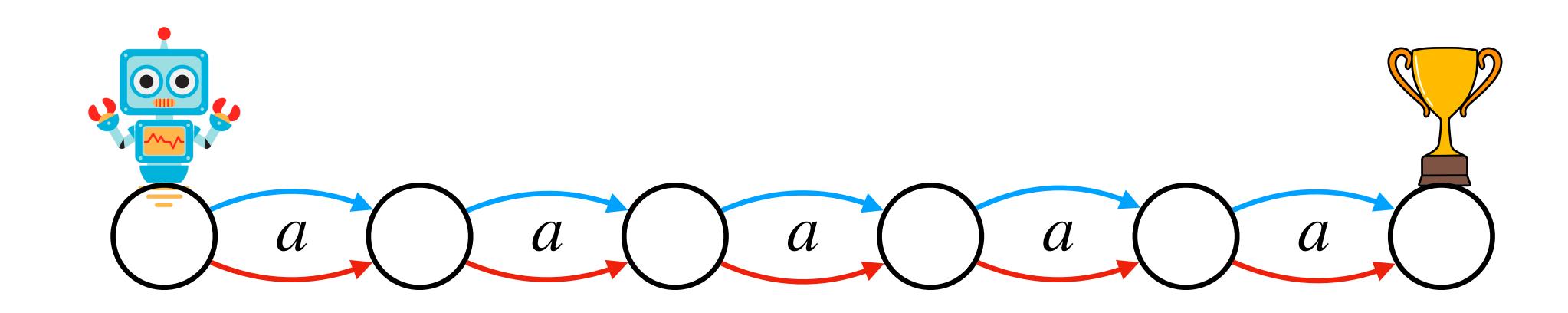
World

$$s'=M*(s,a)$$



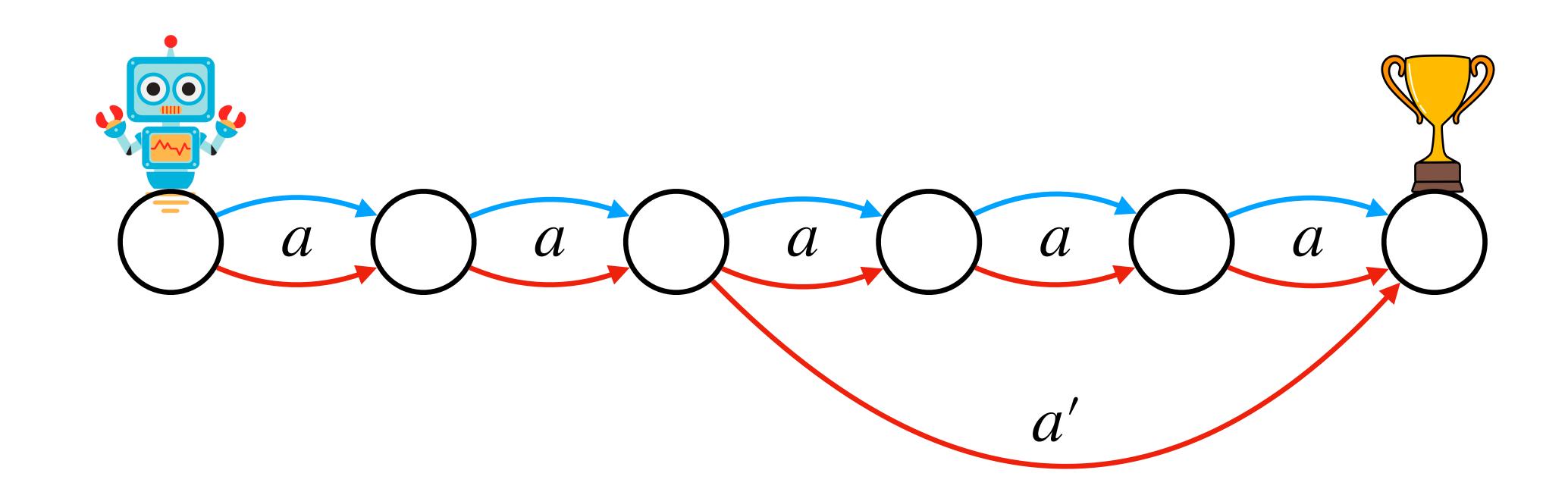
Experts picks action a to go to the goal

Model World
$$s'=\hat{M}(s,a)$$
 $s'=M^*(s,a)$



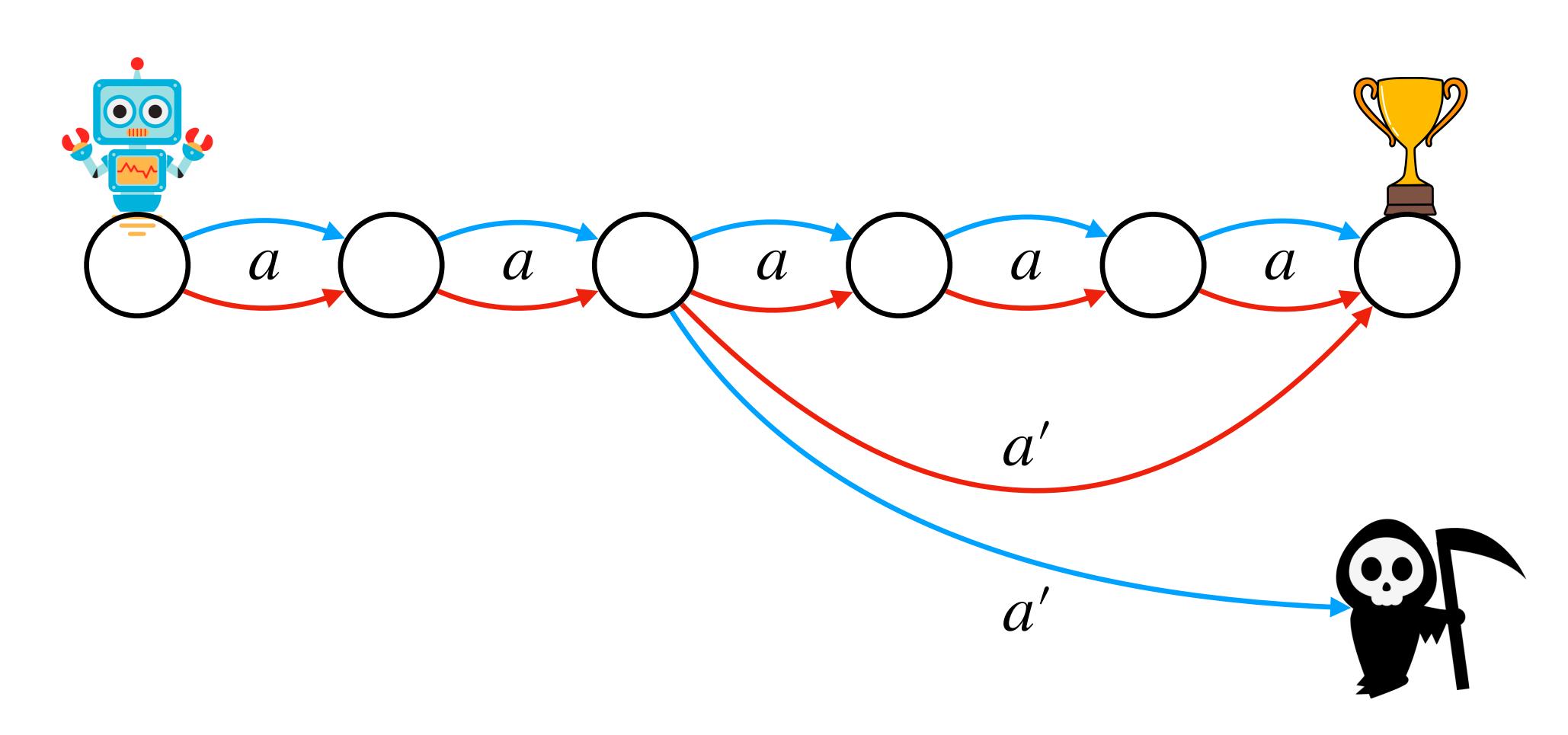
Model agrees with world, i.e. train error zero!

Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



What if the model is optimistic? Predicts a short cut to the goal by taking action a'

Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



In reality the shortcut ends in death ...

Training on Expert Data

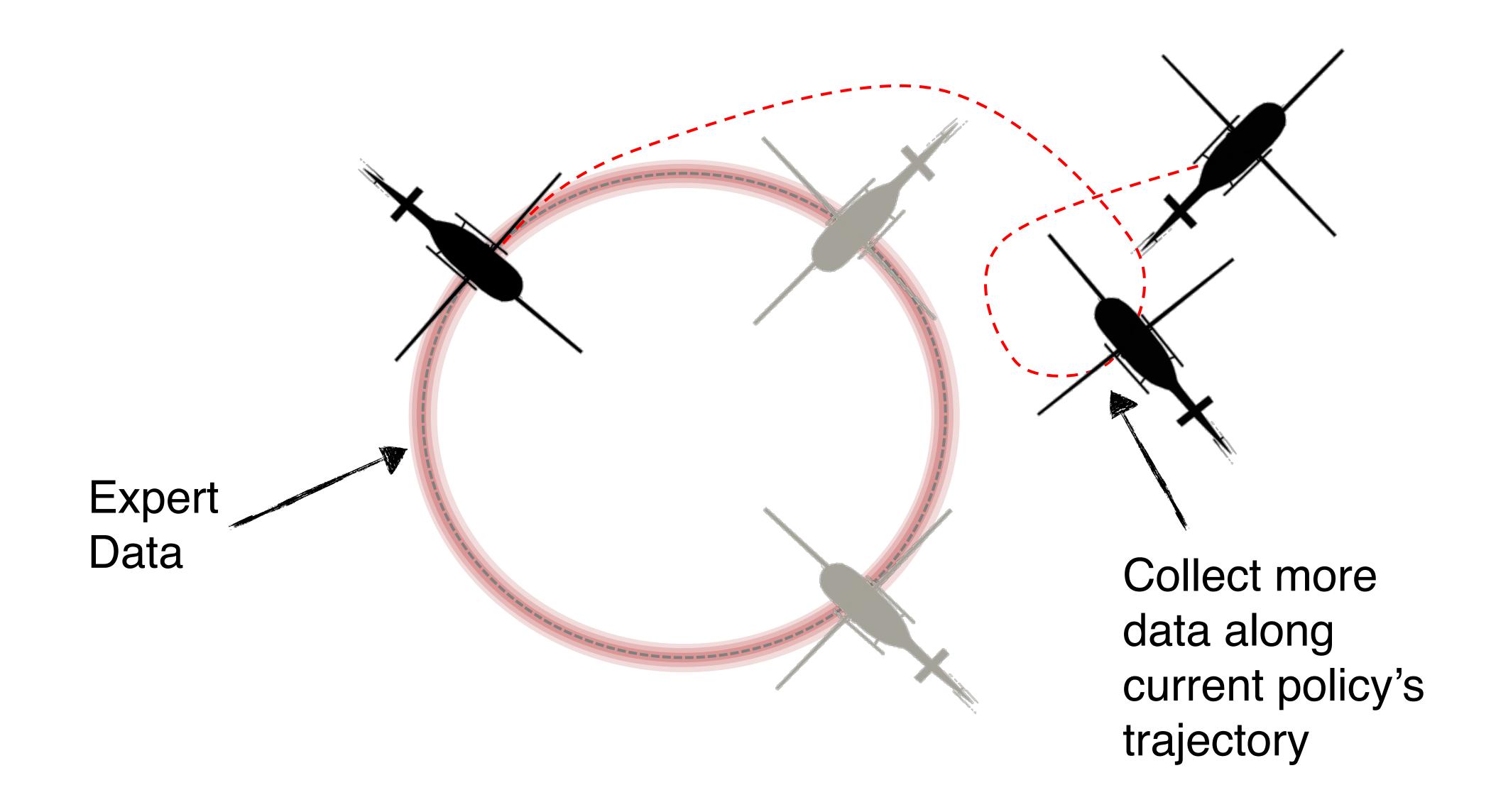
(From Ross and Bagnell, 2012)

Strategy

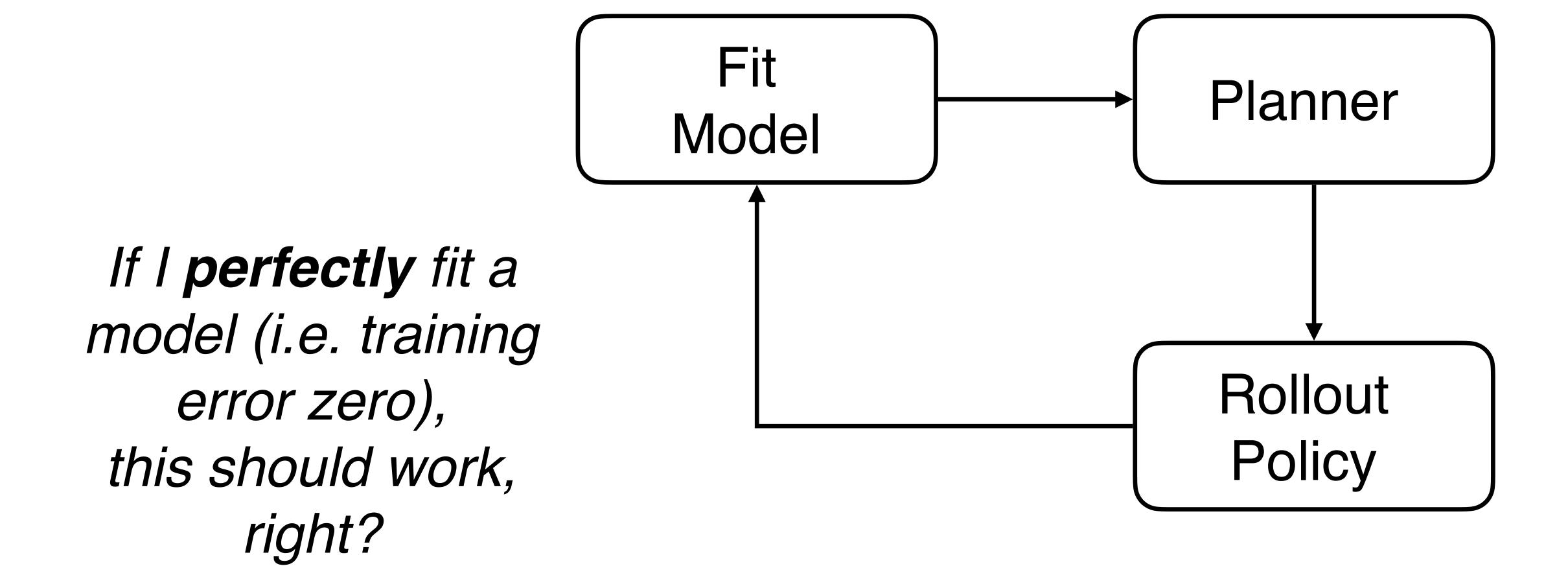
Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

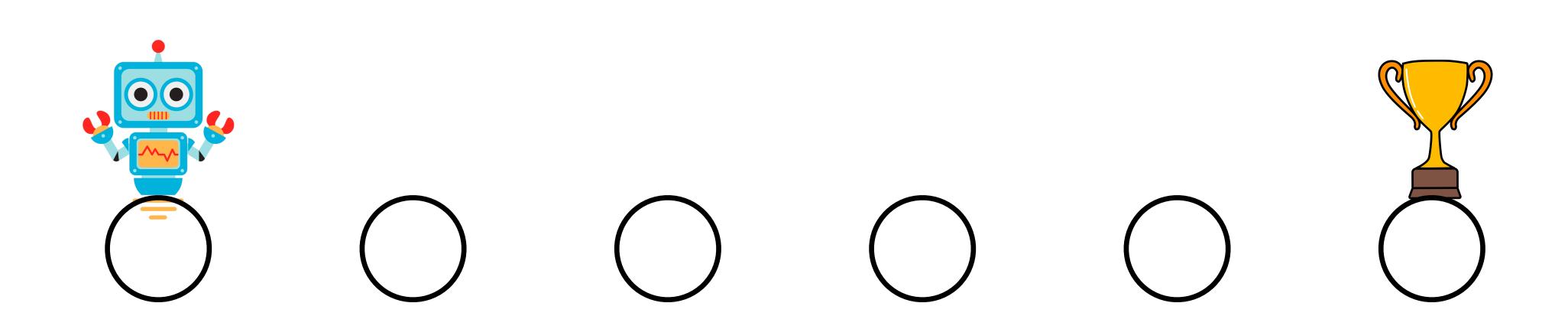
Improve model where policy goes



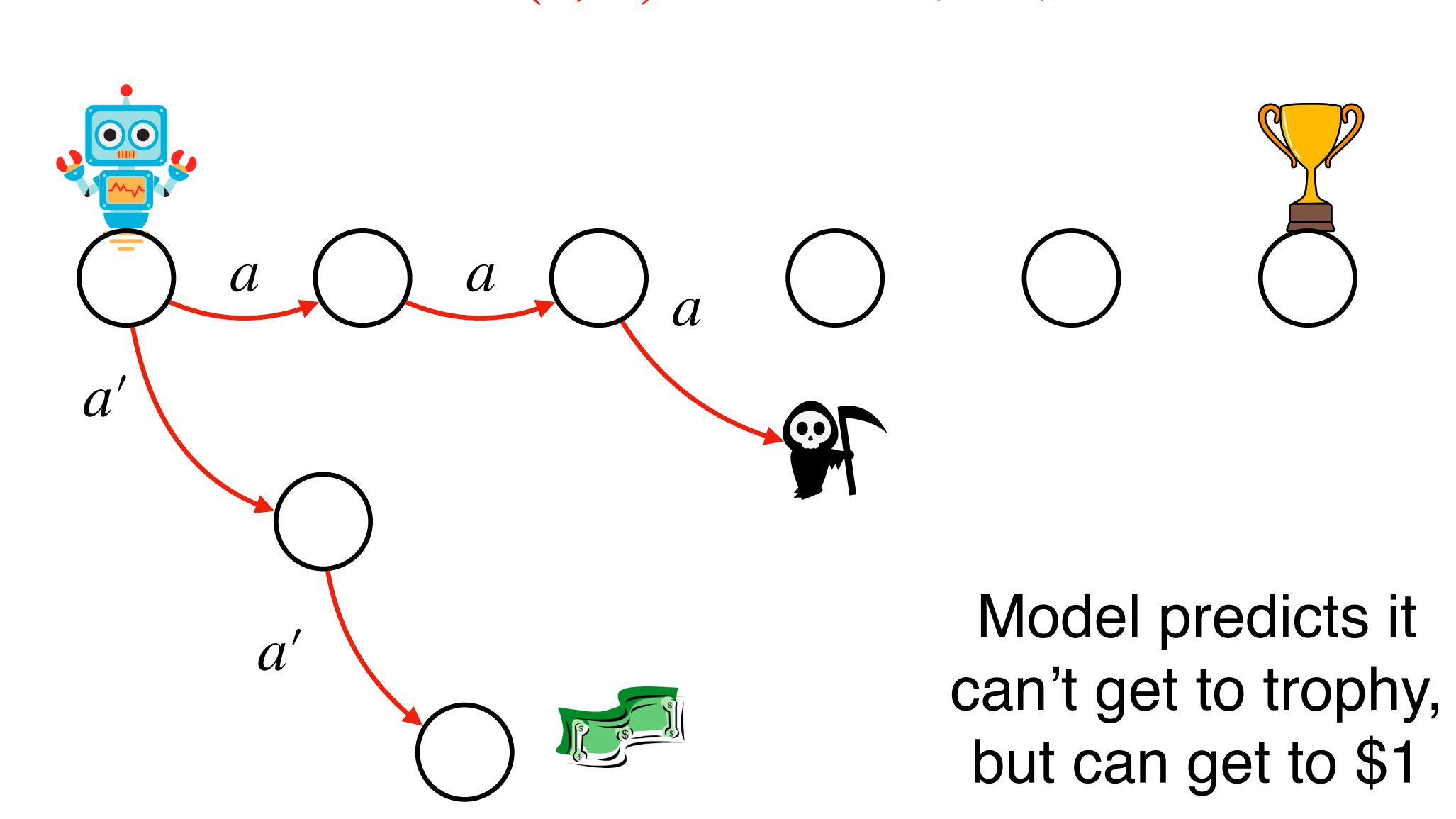
Model Based RL v2.0



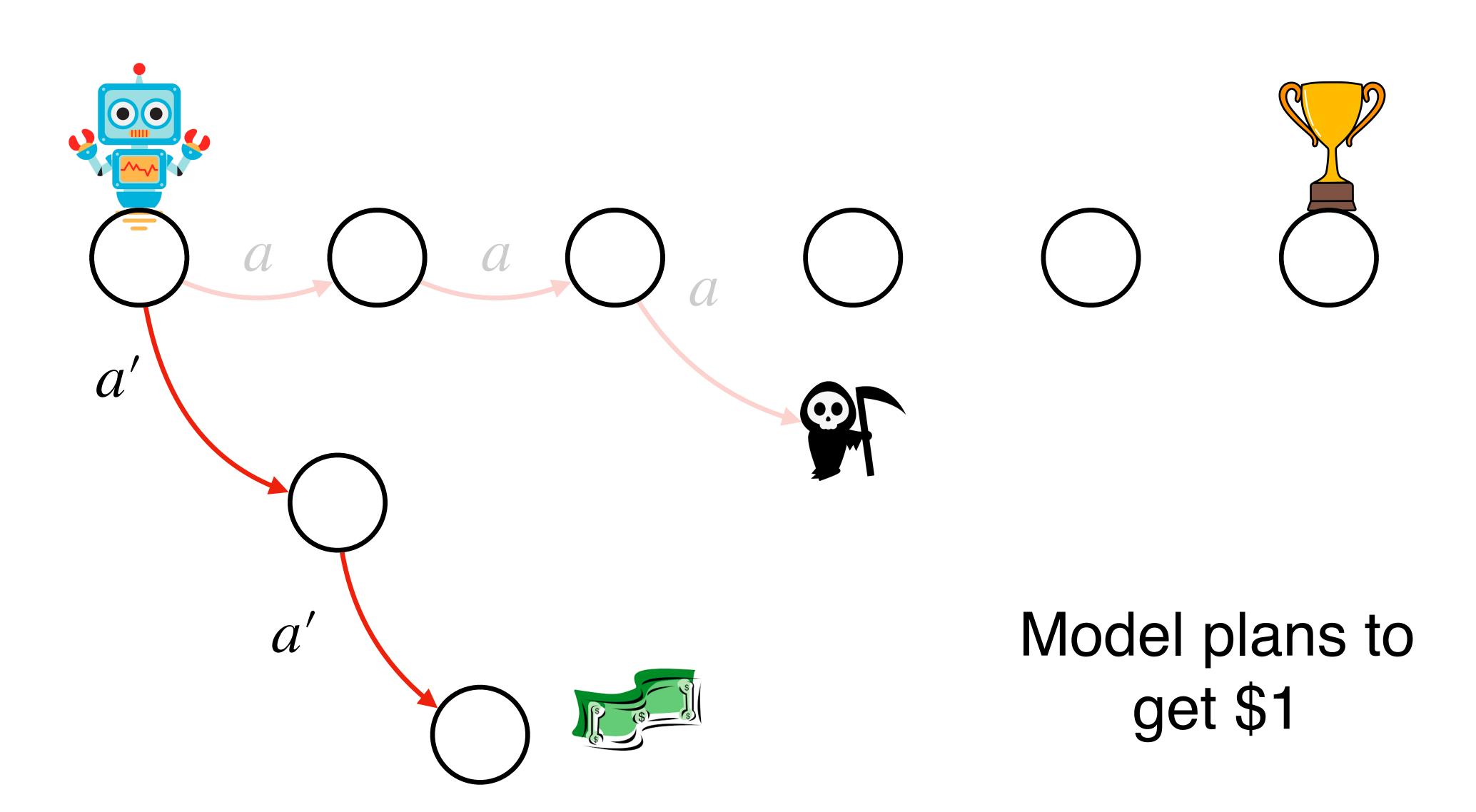
Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



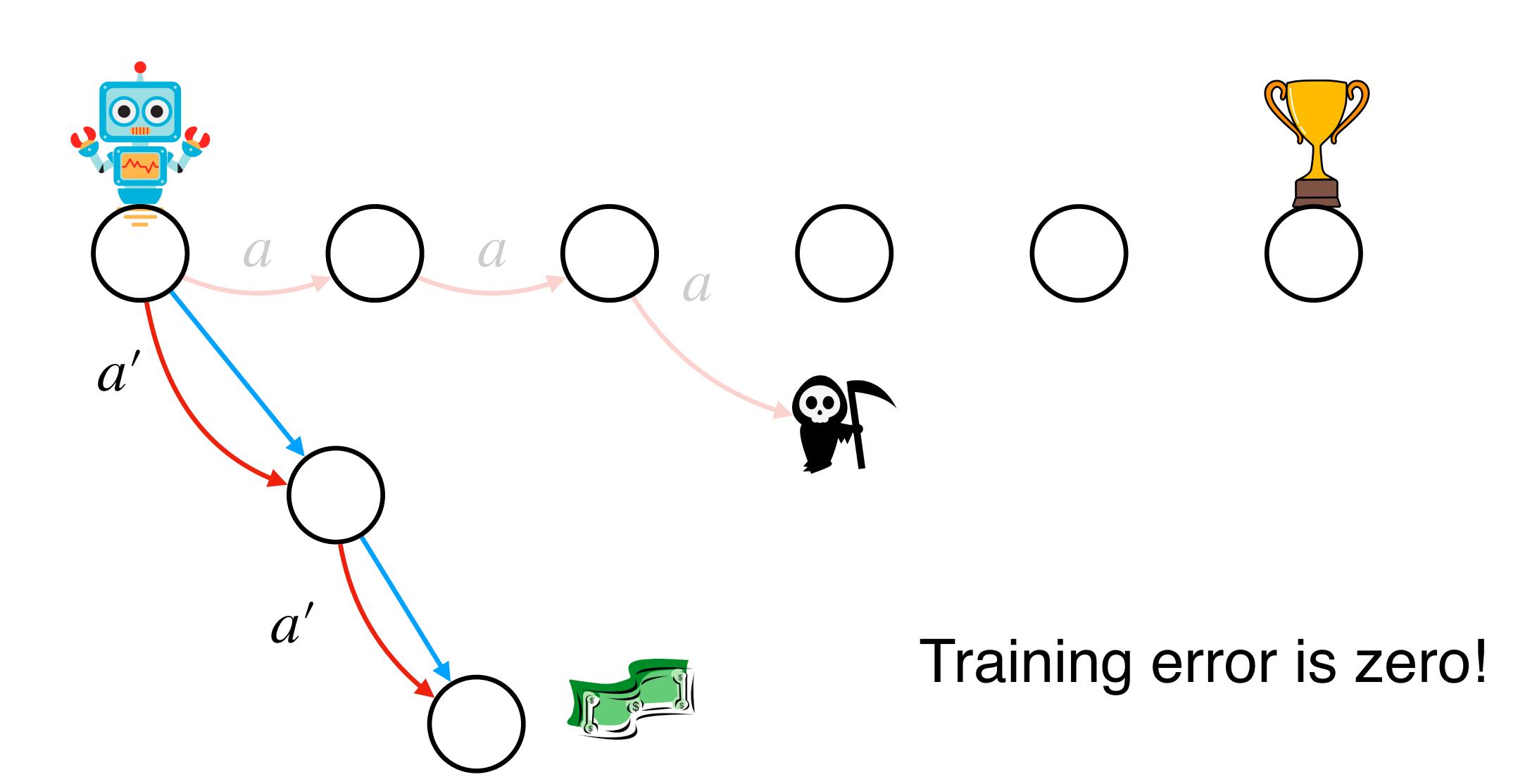
Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



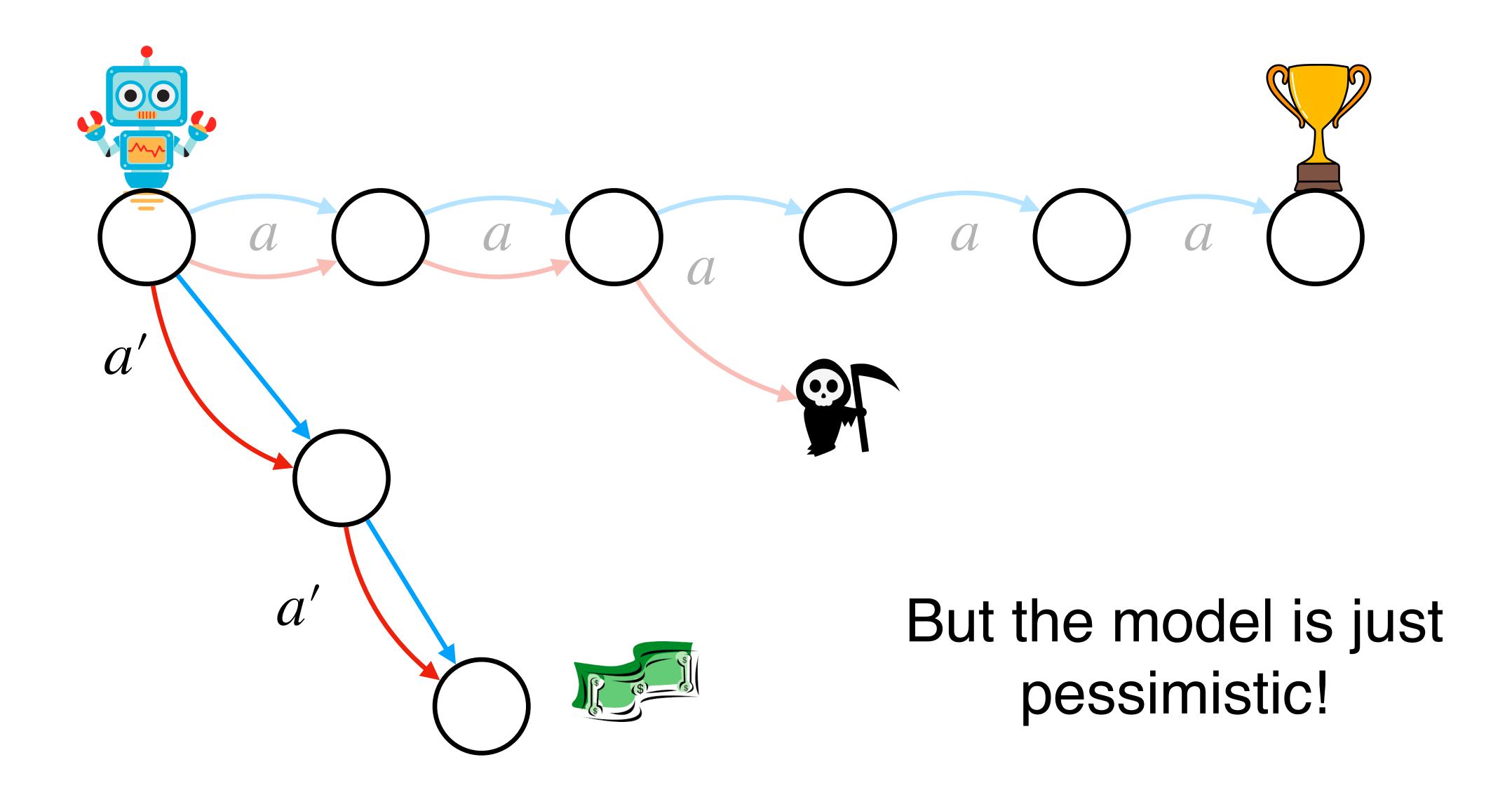
Model World $s'=\hat{M}(s,a)$ s'=M*(s,a)



Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



Model World
$$s'=\hat{M}(s,a)$$
 $s'=M*(s,a)$



Strategy

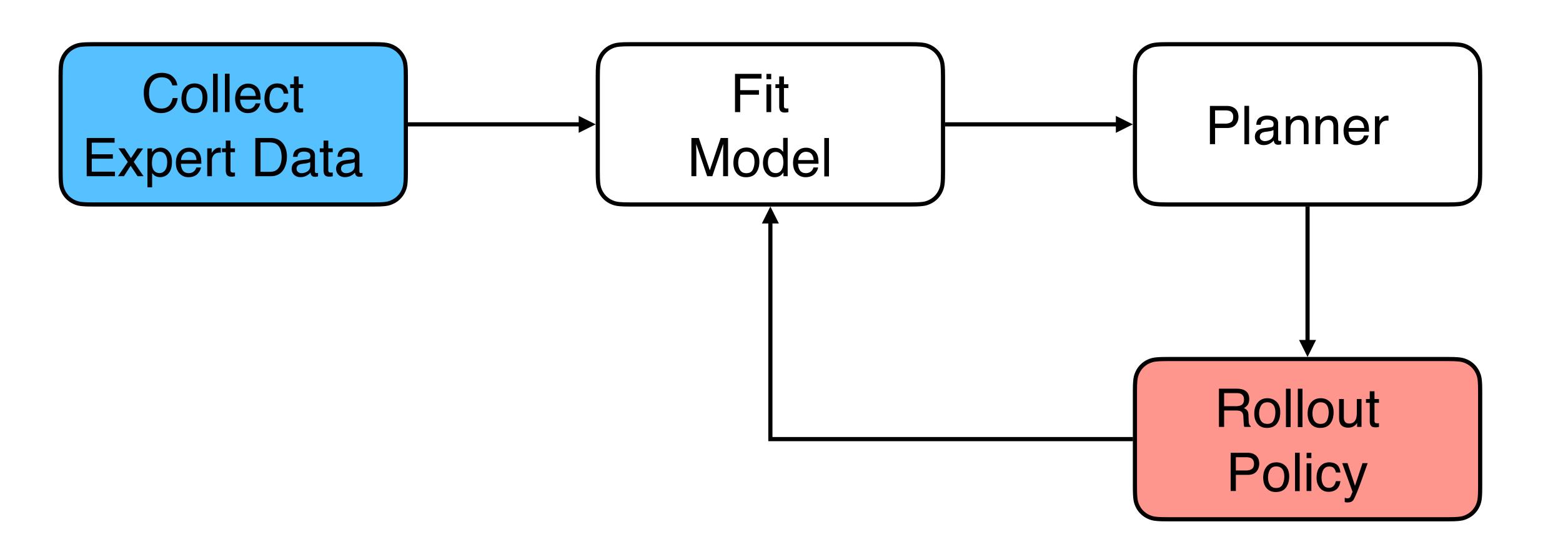
Train a model on state actions visited by the expert!

Train a model on state actions visited by the learner!

Train a model on state actions visited by both the expert and the learner!

Model Learning with Planner in Loop

(Ross & Bagnell, 2012)



Model learning on both expert and learner data works!

(From Ross & Bagnell, 2012)

Theoretical Foundations for Model Based RL

Agnostic System Identification for Model-Based Reinforcement Learning

Stéphane Ross

Robotics Institute, Carnegie Mellon University, PA USA

J. Andrew Bagnell

Robotics Institute, Carnegie Mellon University, PA USA

STEPHANEROSS@CMU.EDU

DBAGNELL@RI.CMU.EDU

Lemma: Performance Difference via Planning in Model

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$\leq \mathbb{E}_{s_0} \left[V_{\hat{M}}^{\hat{\pi}}(s_0) - V_{\hat{M}}^{\pi^*}(s_0) \right]$$

Planning error

$$\leq \mathbb{E}_{s_0} \left| V_{\hat{M}}^{\hat{\pi}}(s_0) - V_{\hat{M}}^{\pi^*}(s_0) \right| + TV_{\max} \mathbb{E}_{s,a \sim \pi^*} \left| |\hat{M}(s,a) - M^*(s,a)| \right|$$

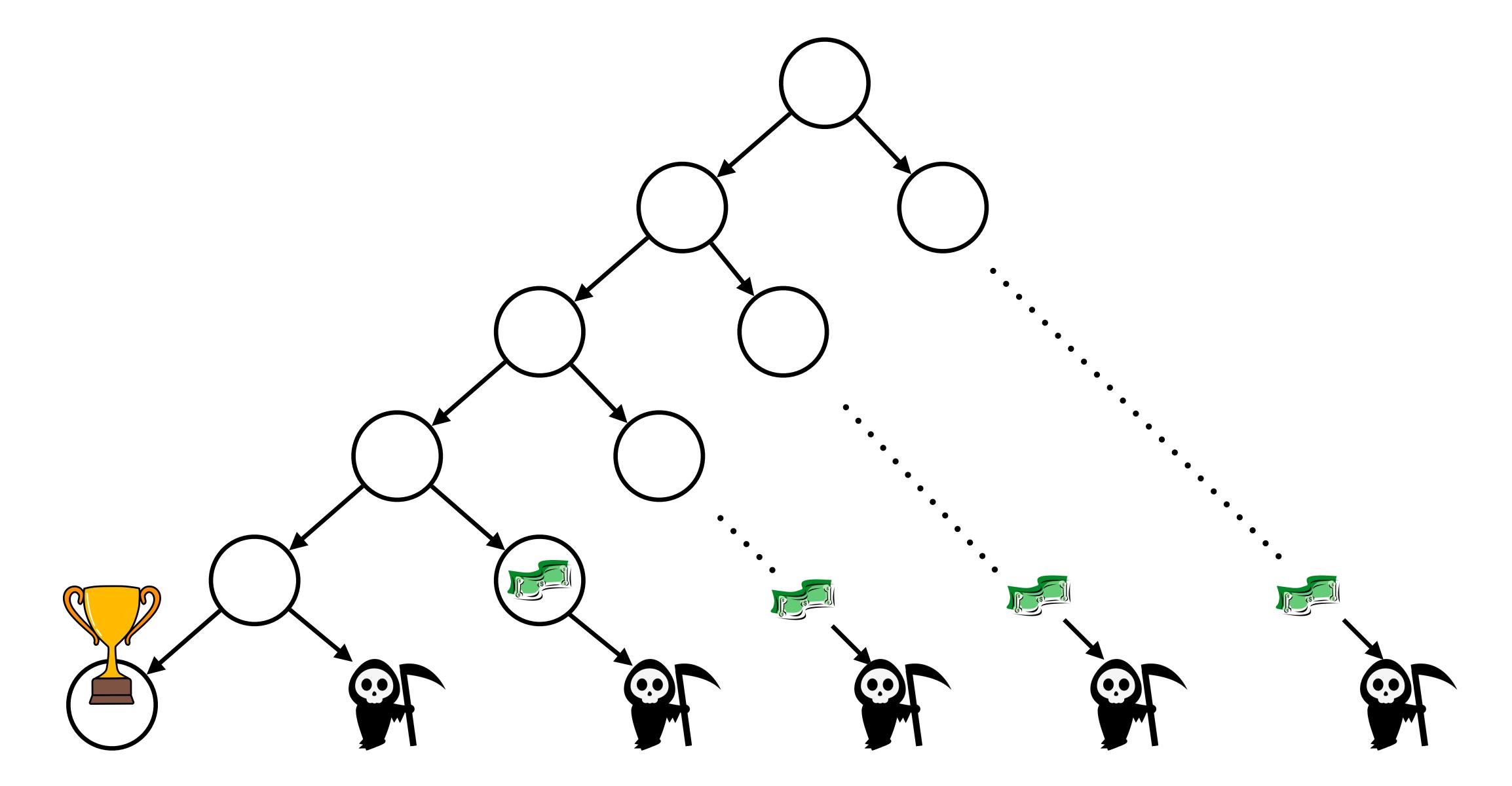
Model fit on expert states

$$+ TV_{\max} \mathbb{E}_{s,a} \hat{\mathbf{m}} | \hat{M}(s,a) - M^*(s,a) |$$

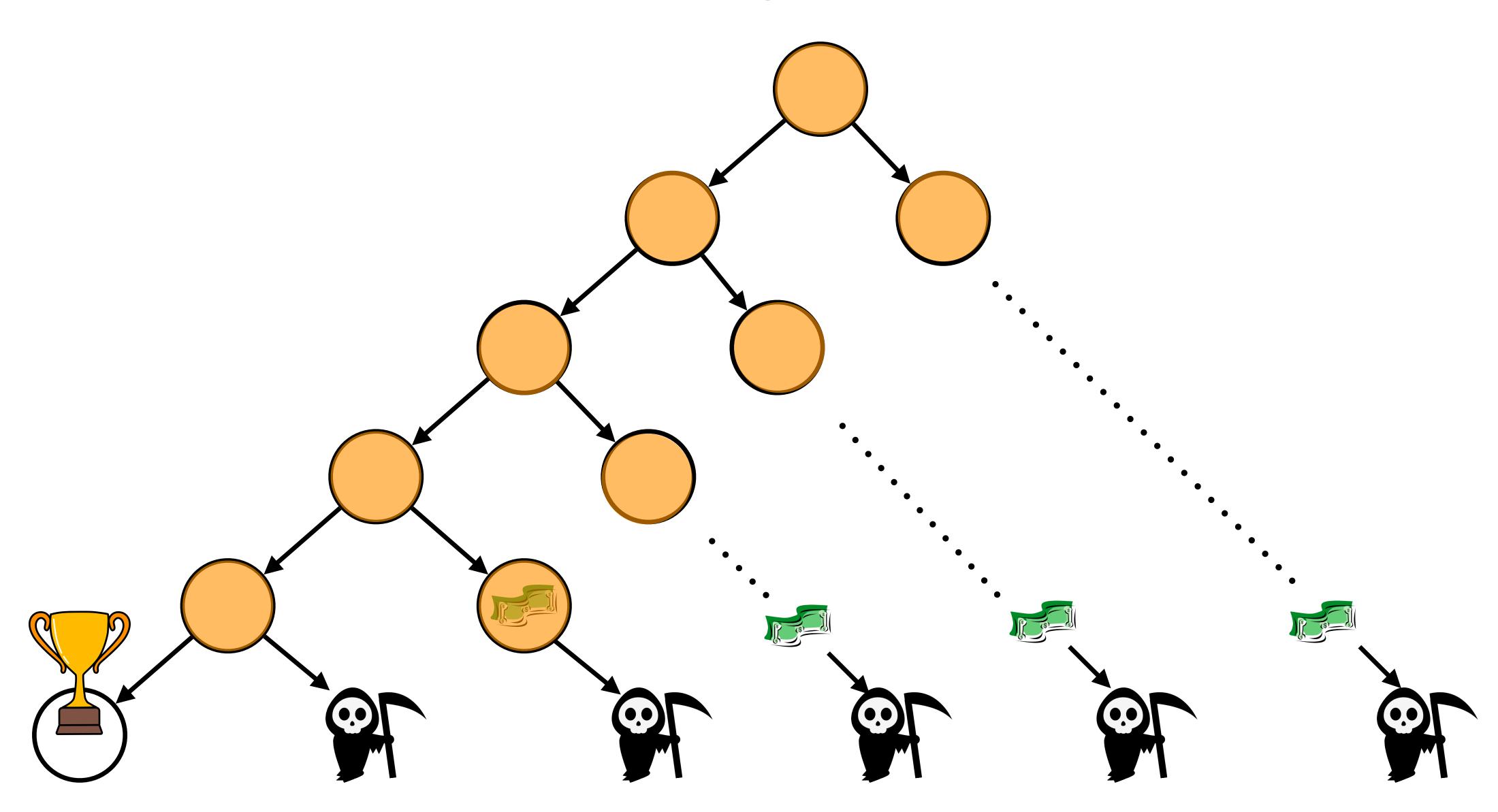
Model fit on policy states

The Challenge.

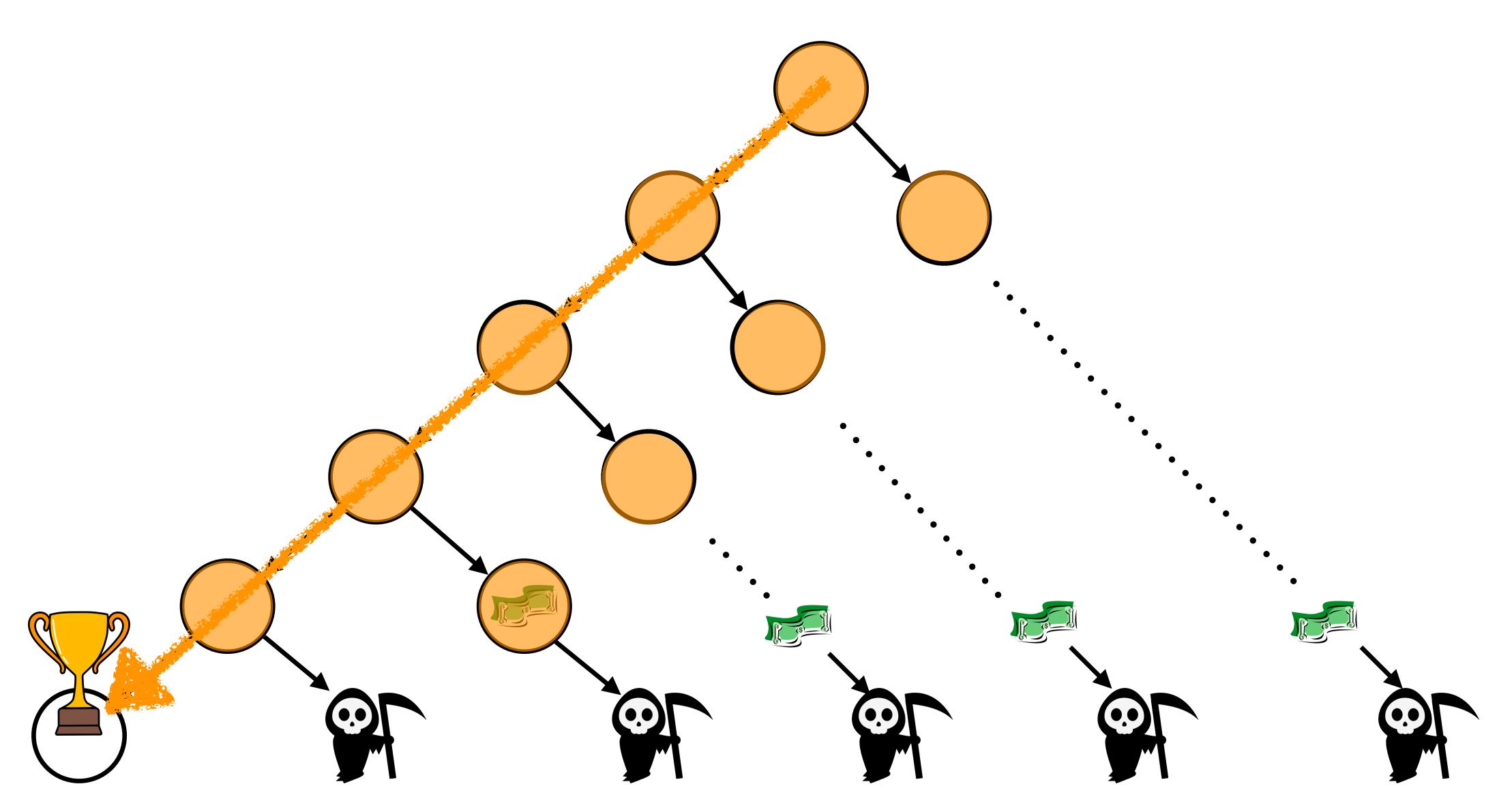
A Tree MDP



Planning is exp(T)!

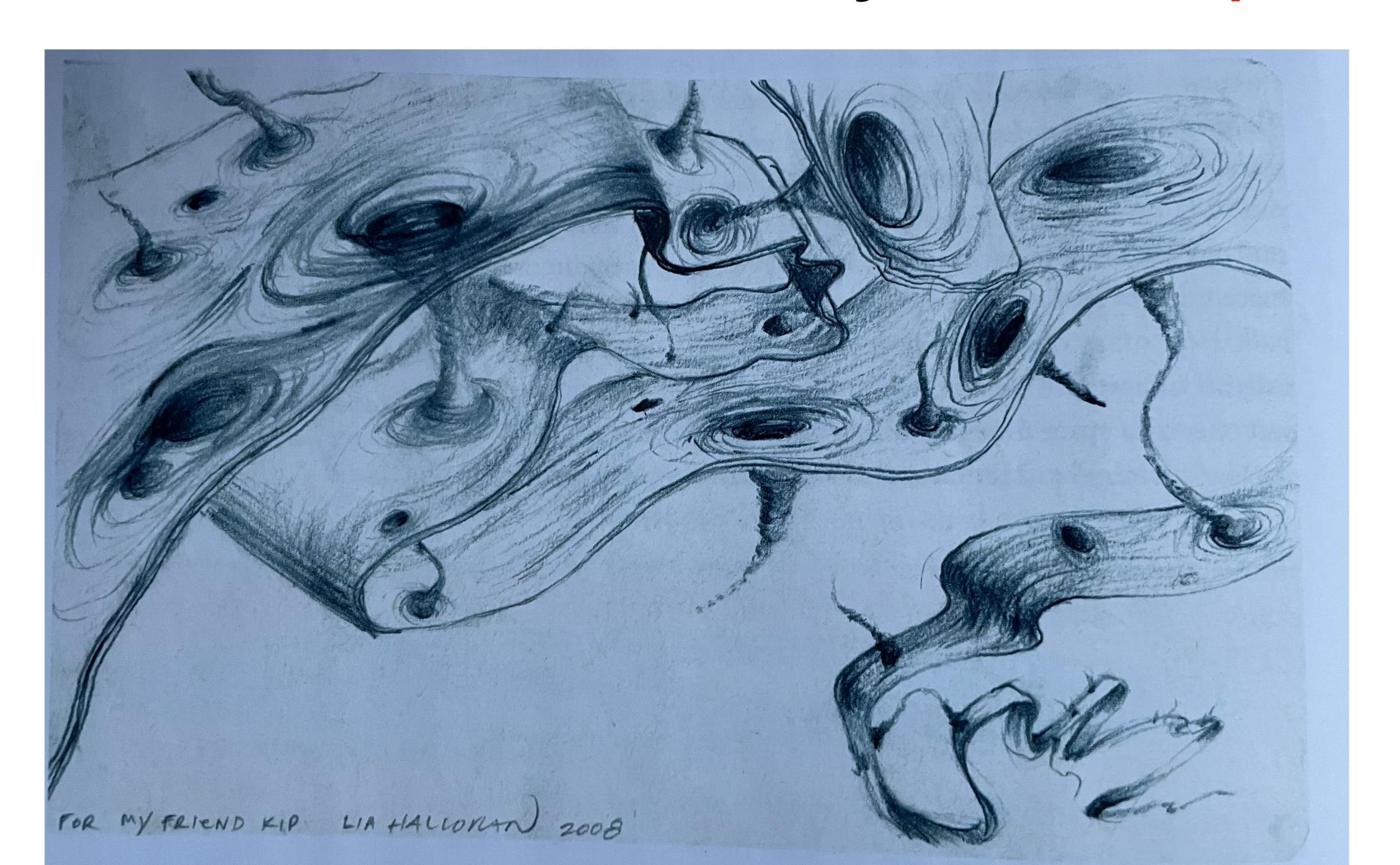


Planning is exp(T)!

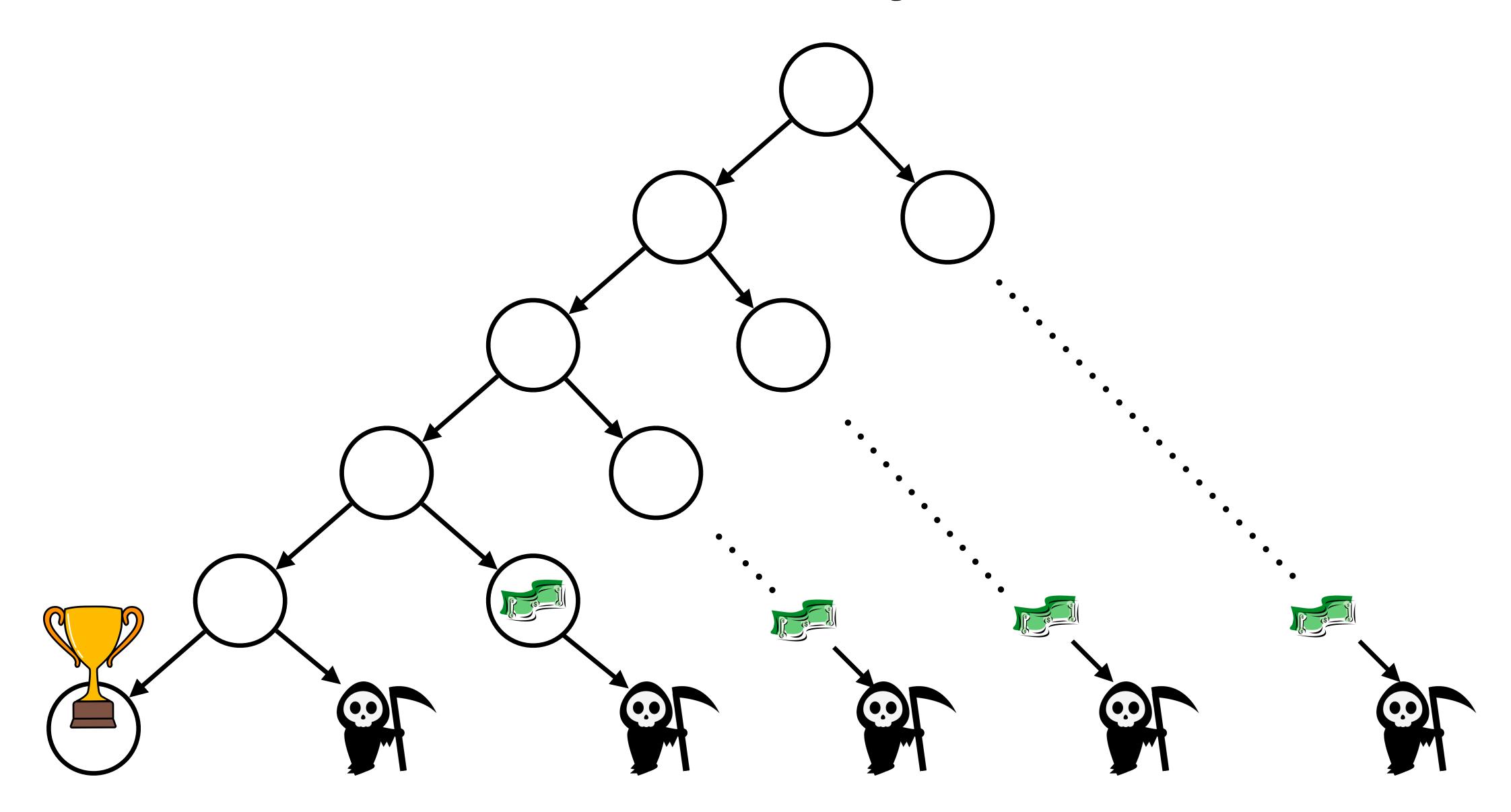


How much planning do we need when learning models?

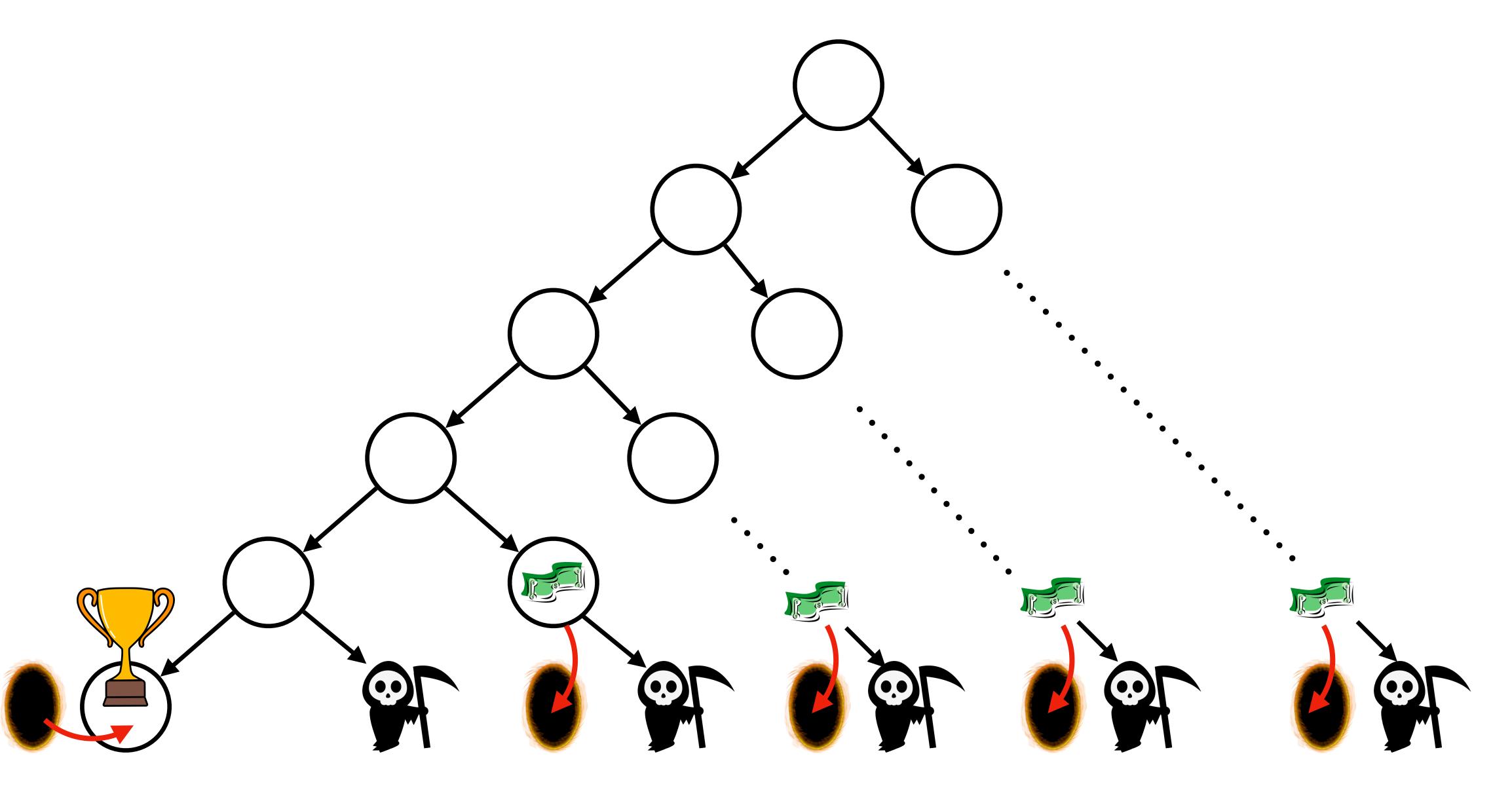
Models can have many hidden portals



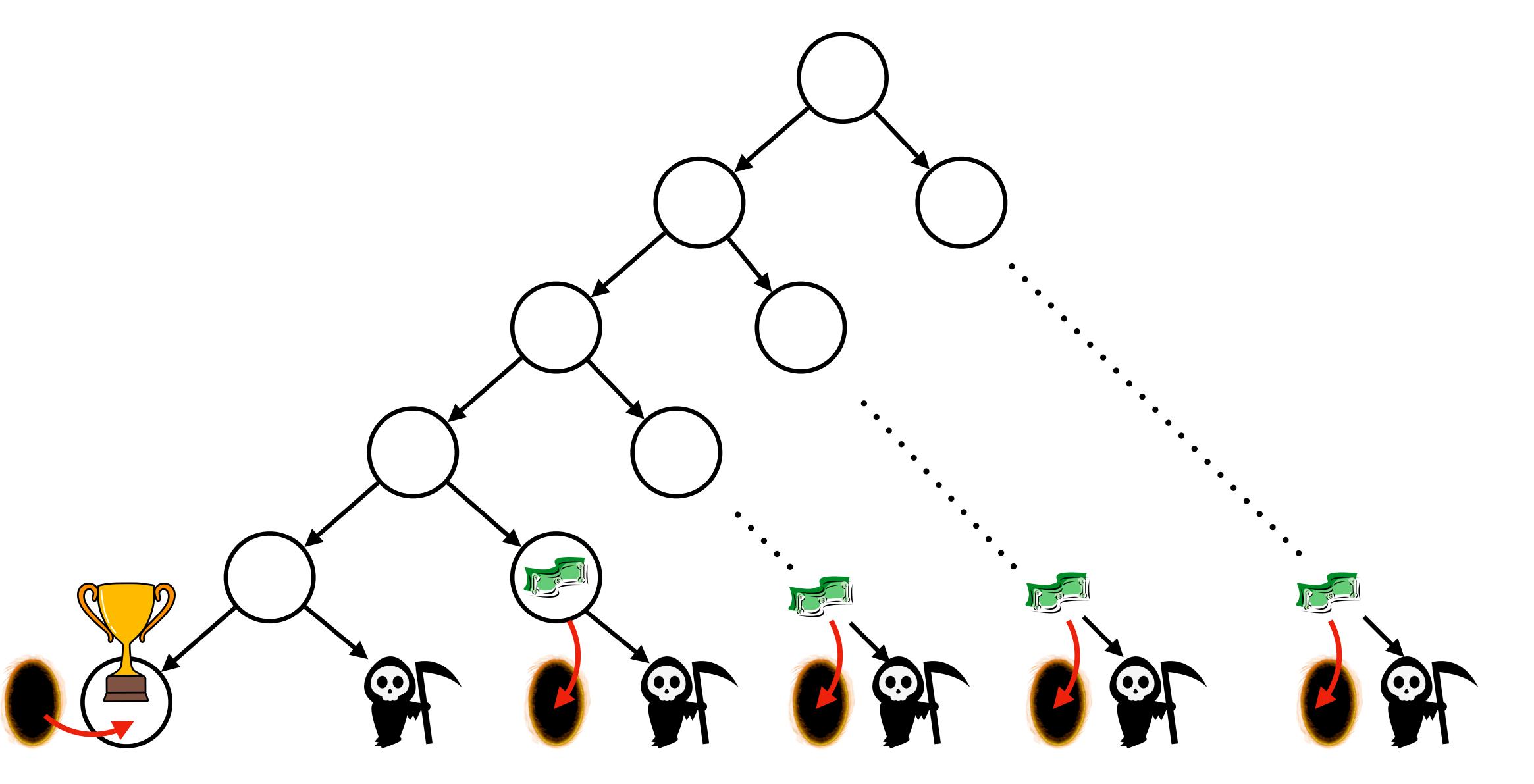
The True Dynamics



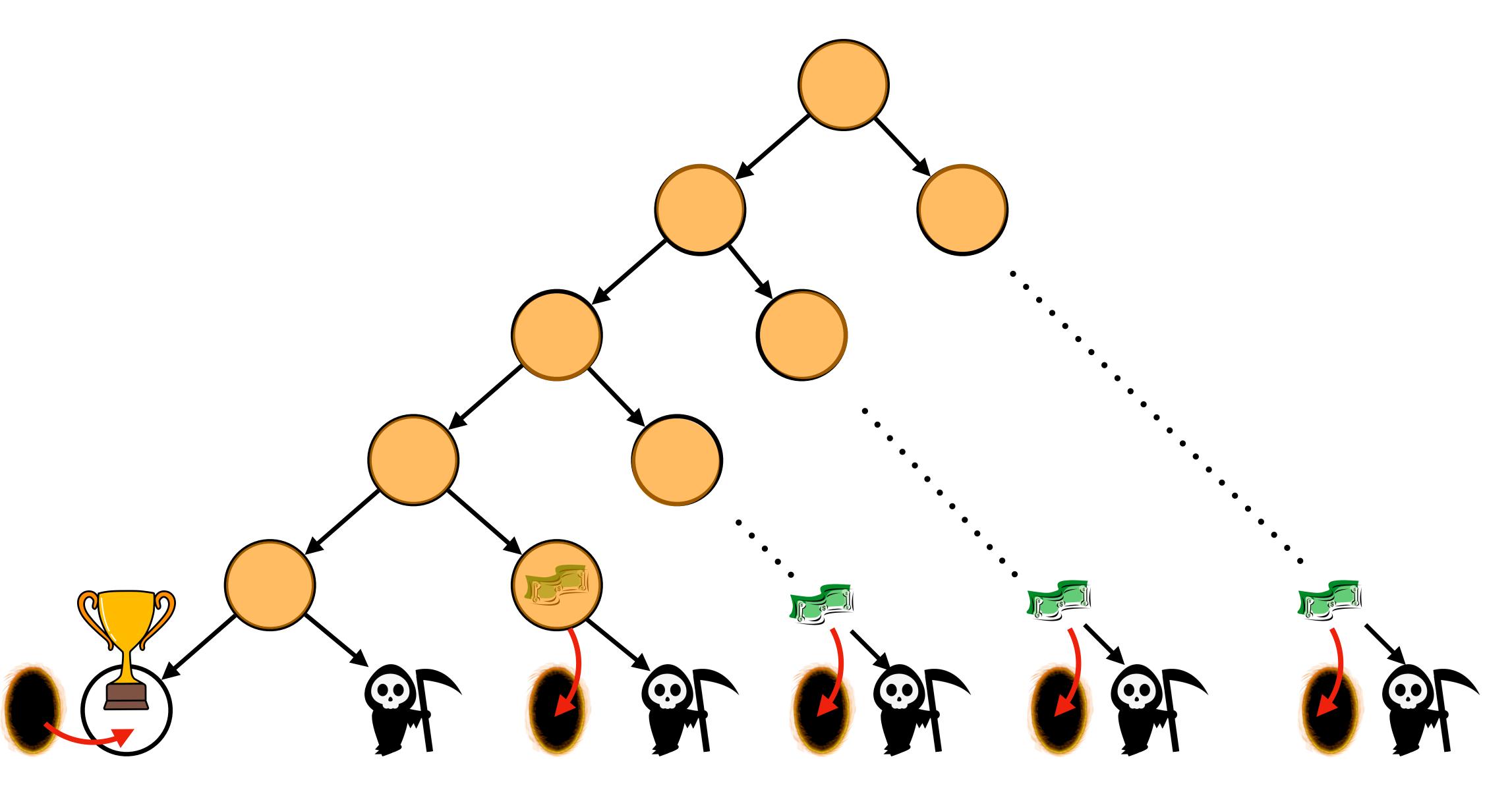
Learnt model has hidden portals!



Model at iteration 0



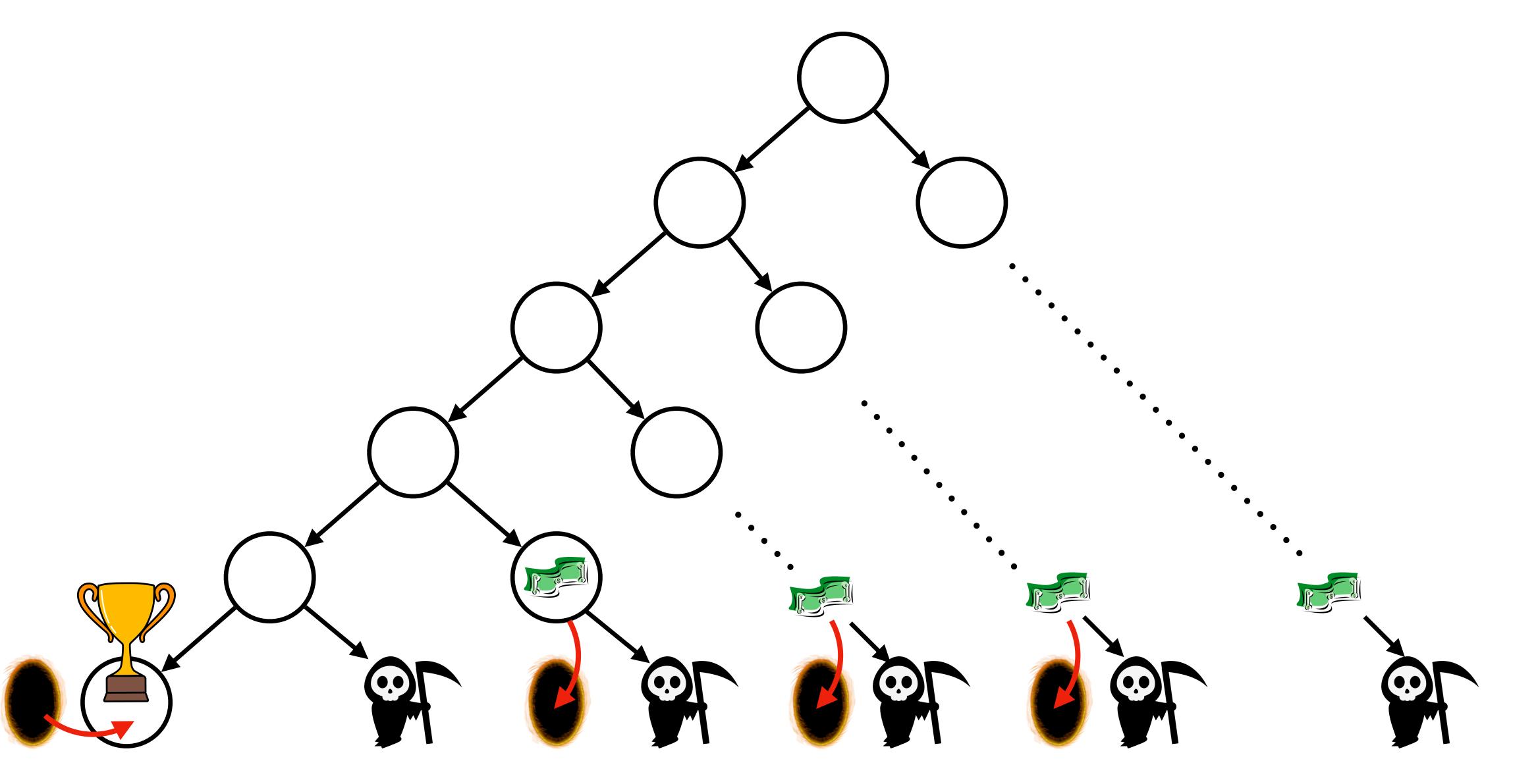
Run planning for exp(T)



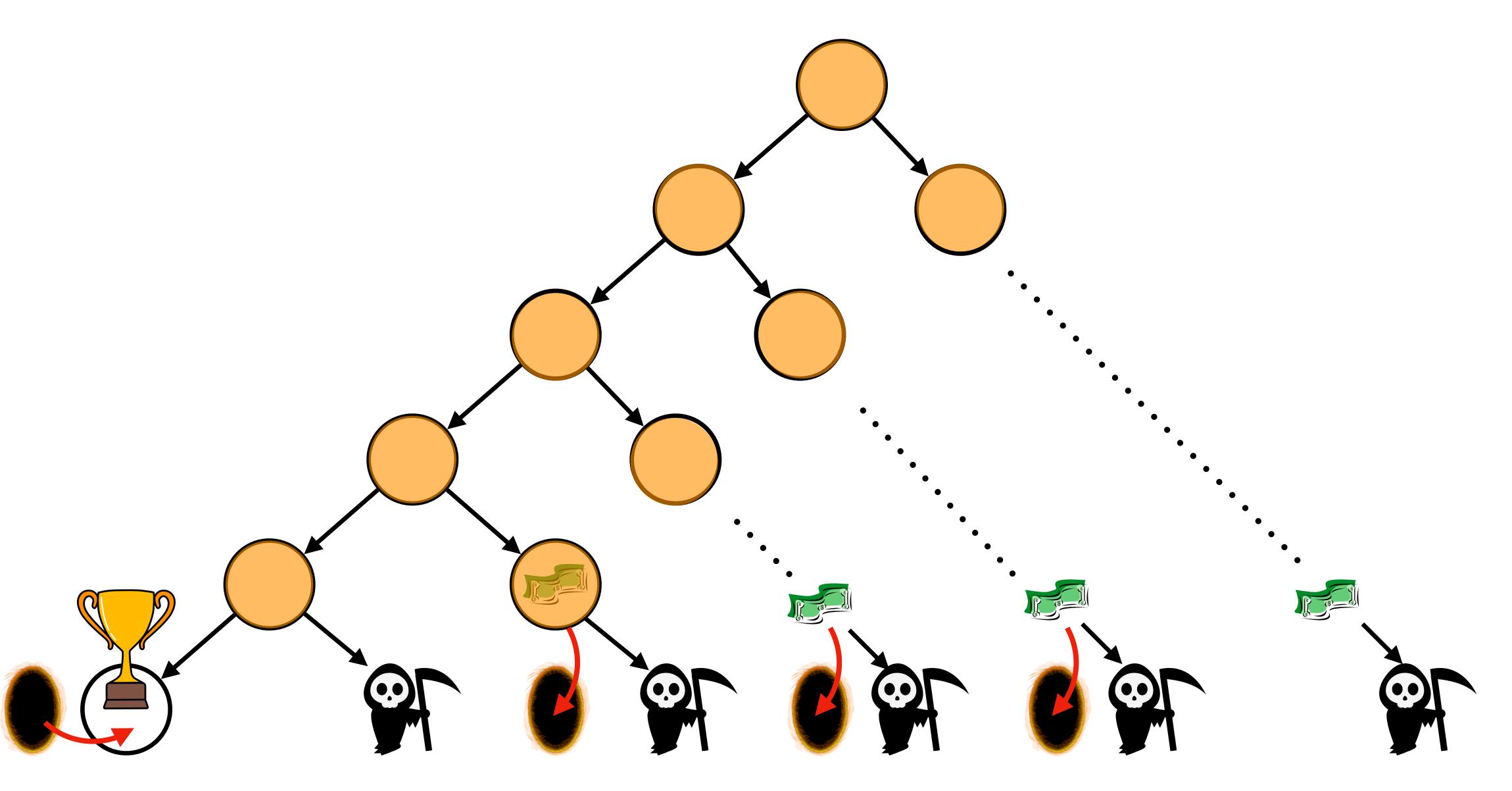
Policy at iteration 0



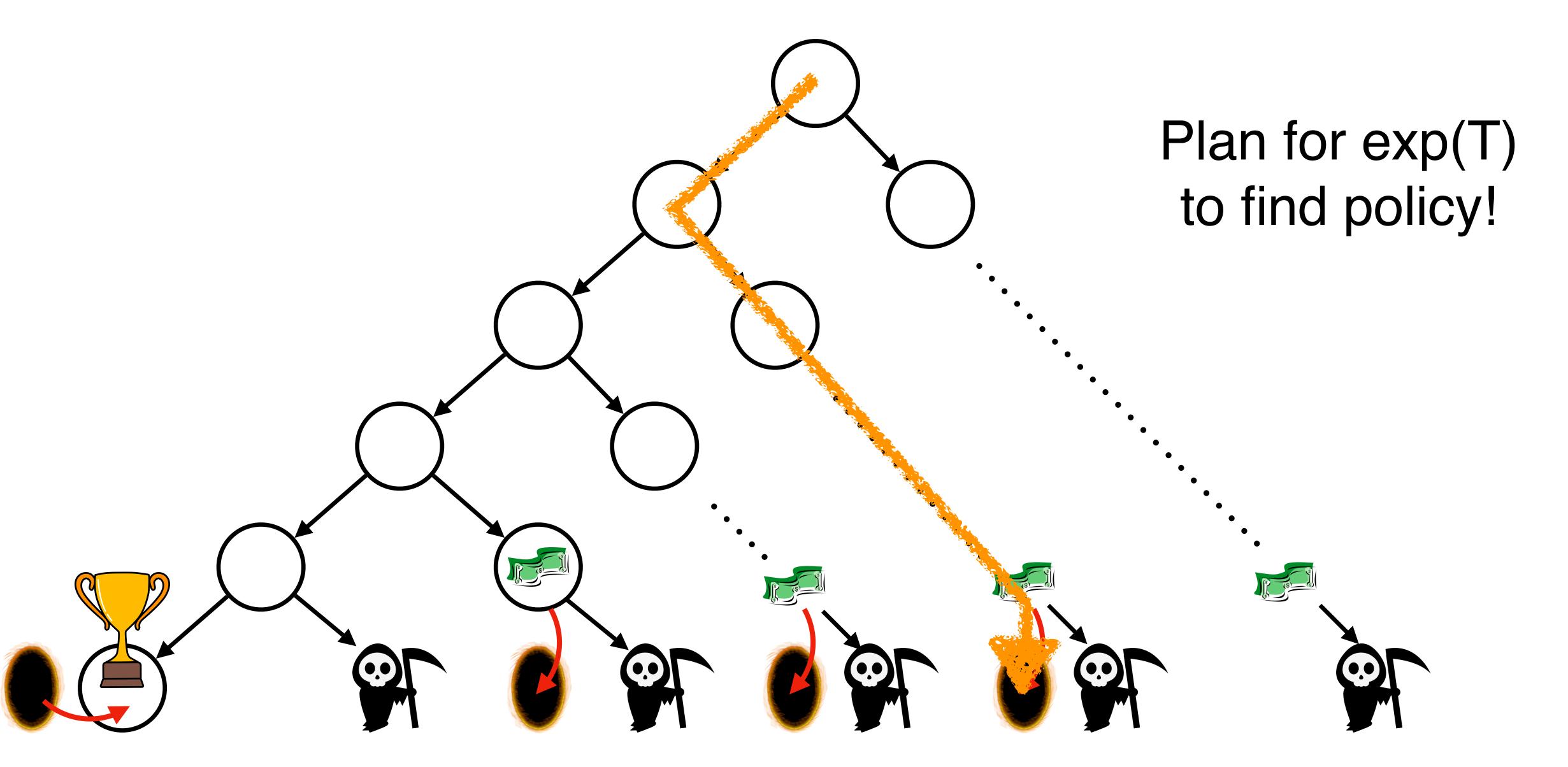
Model at iteration 1



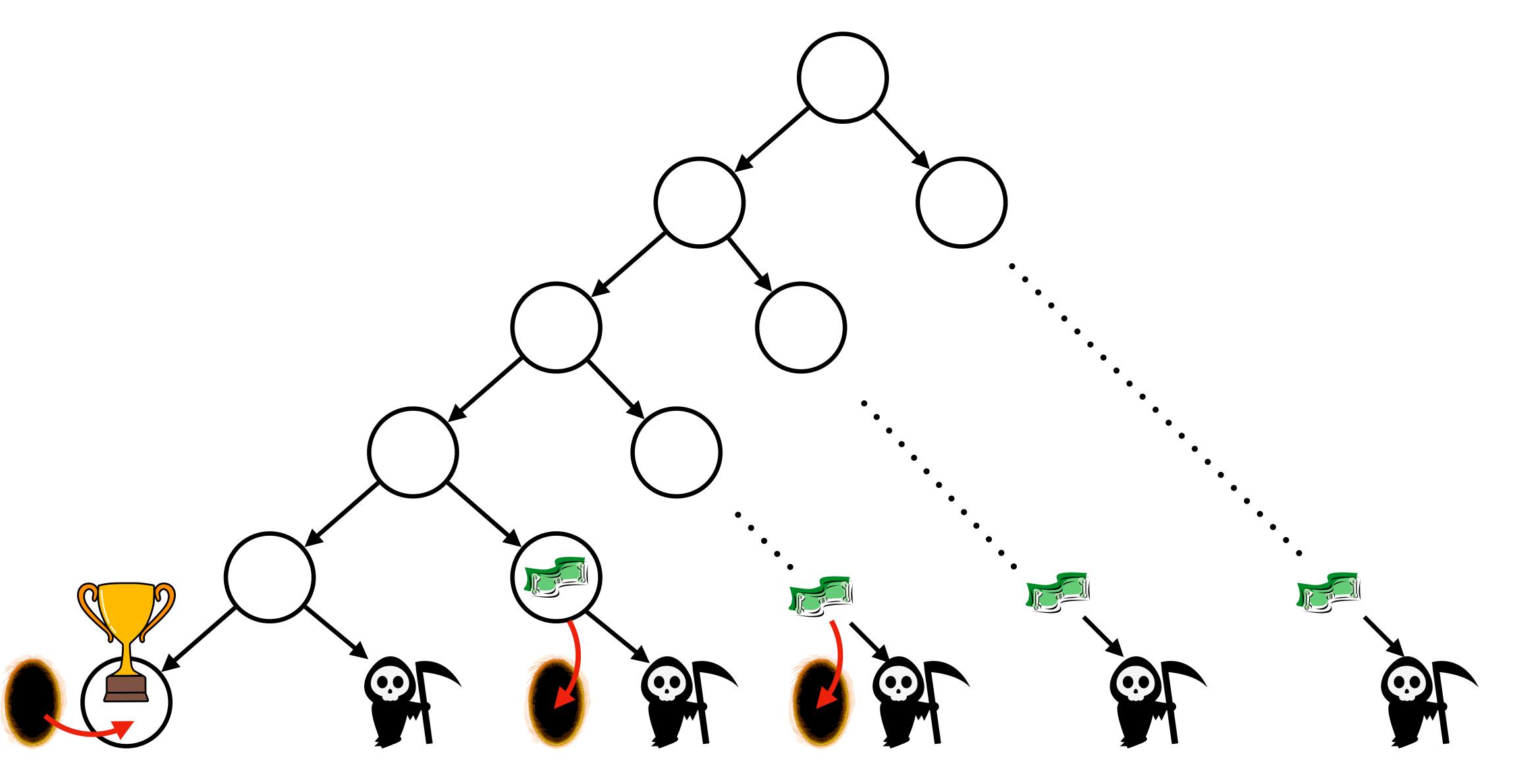
Run planning for exp(T)



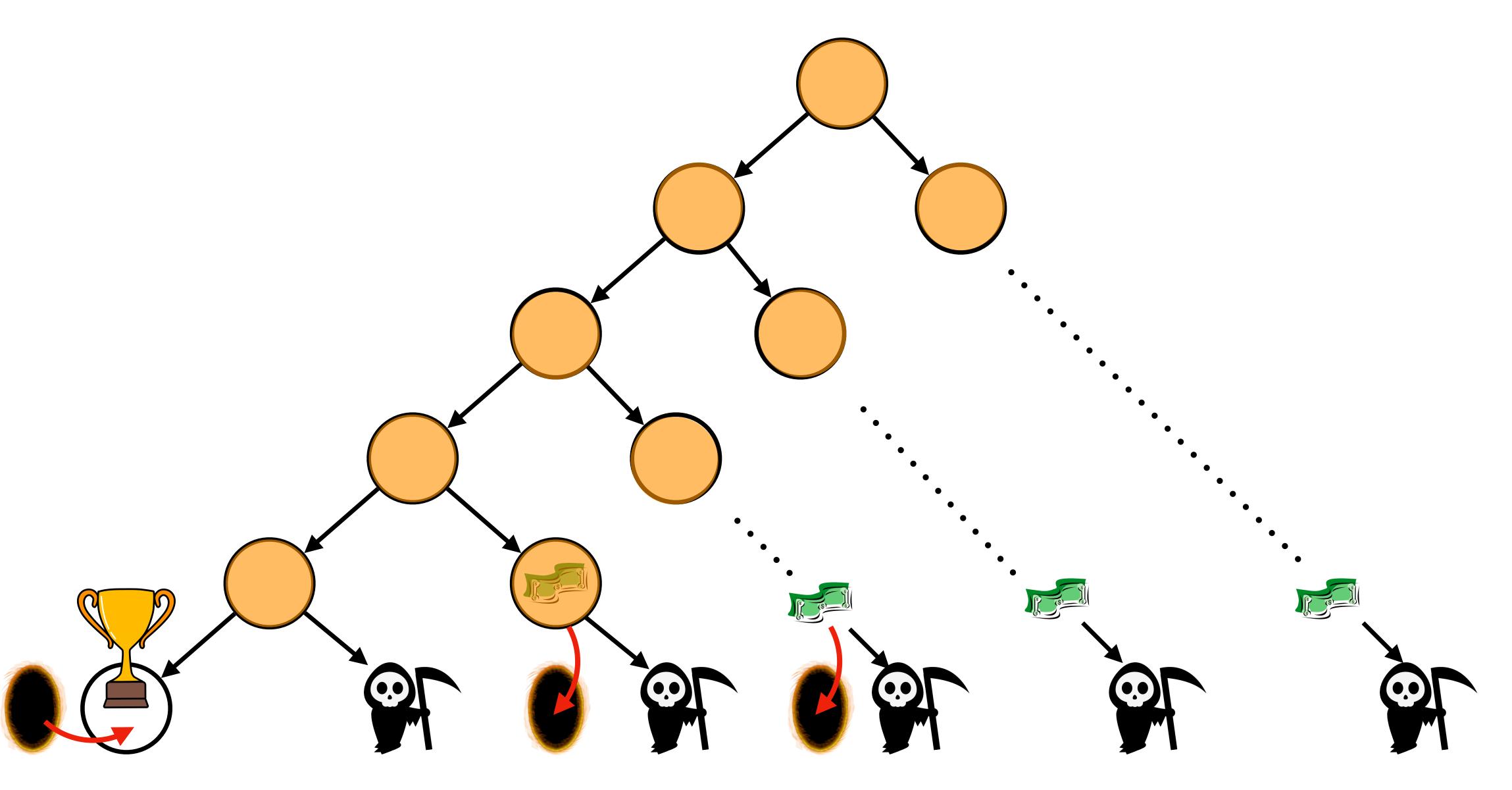
Policy at iteration 1



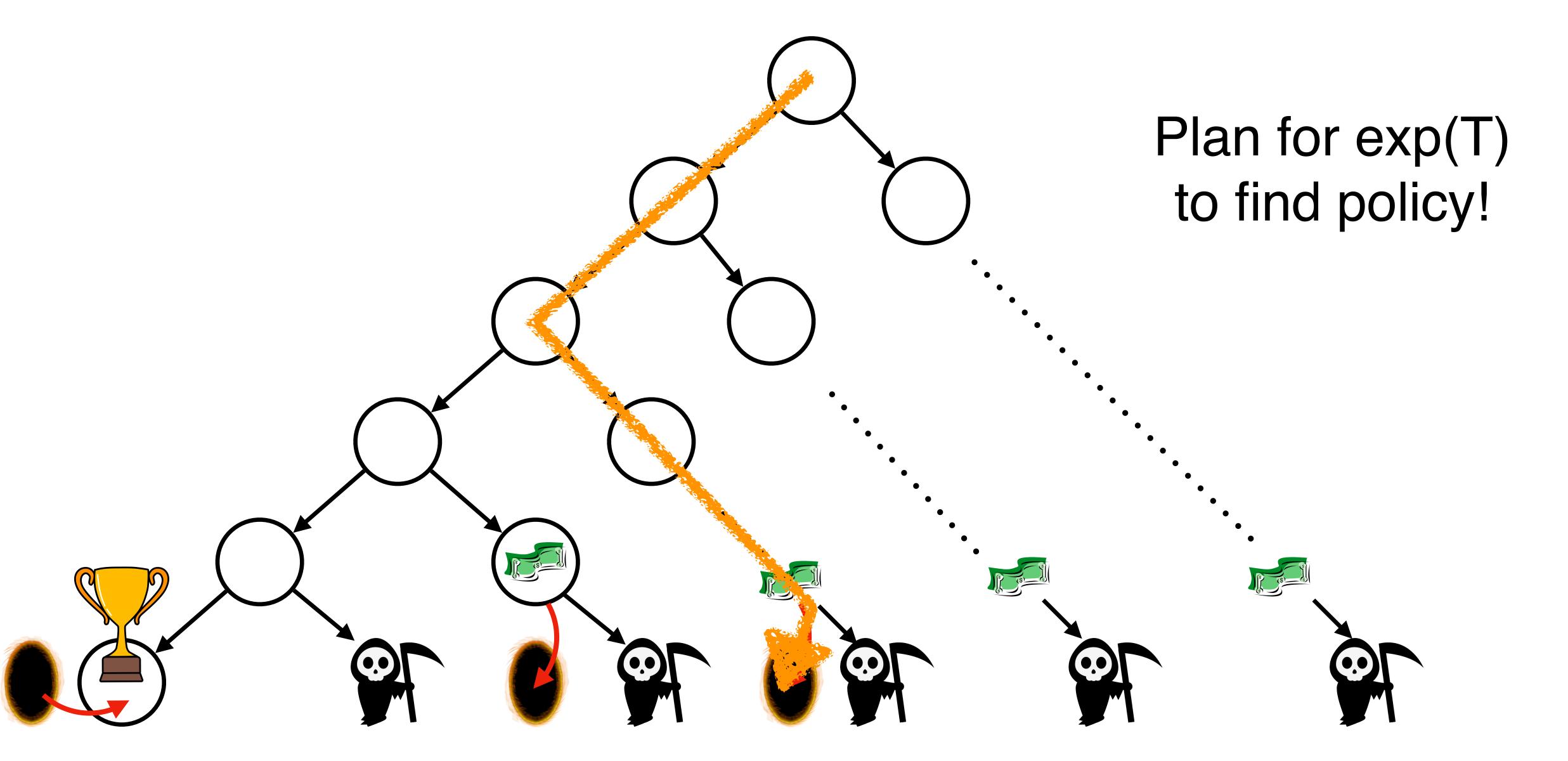
Model at iteration 2

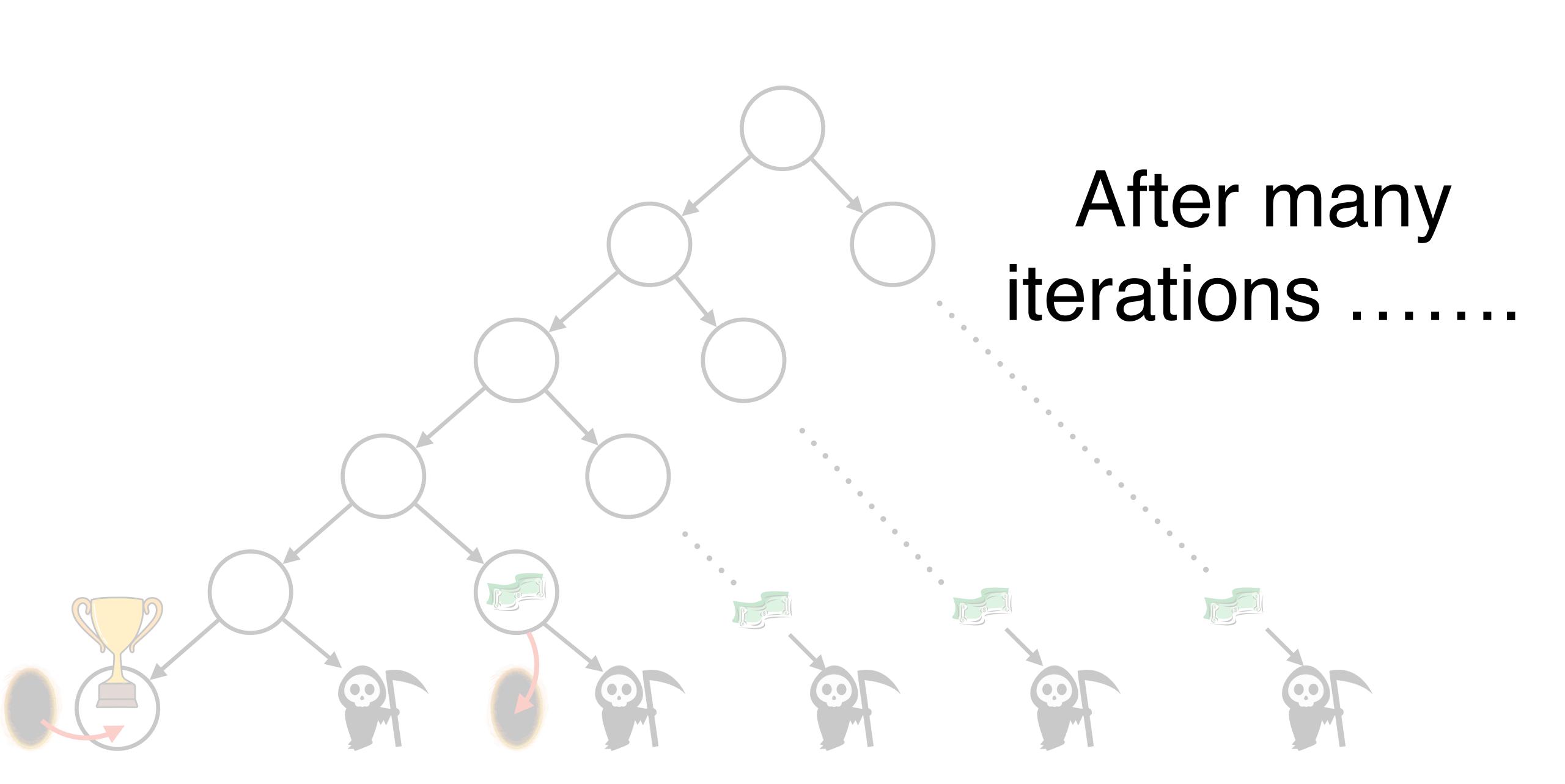


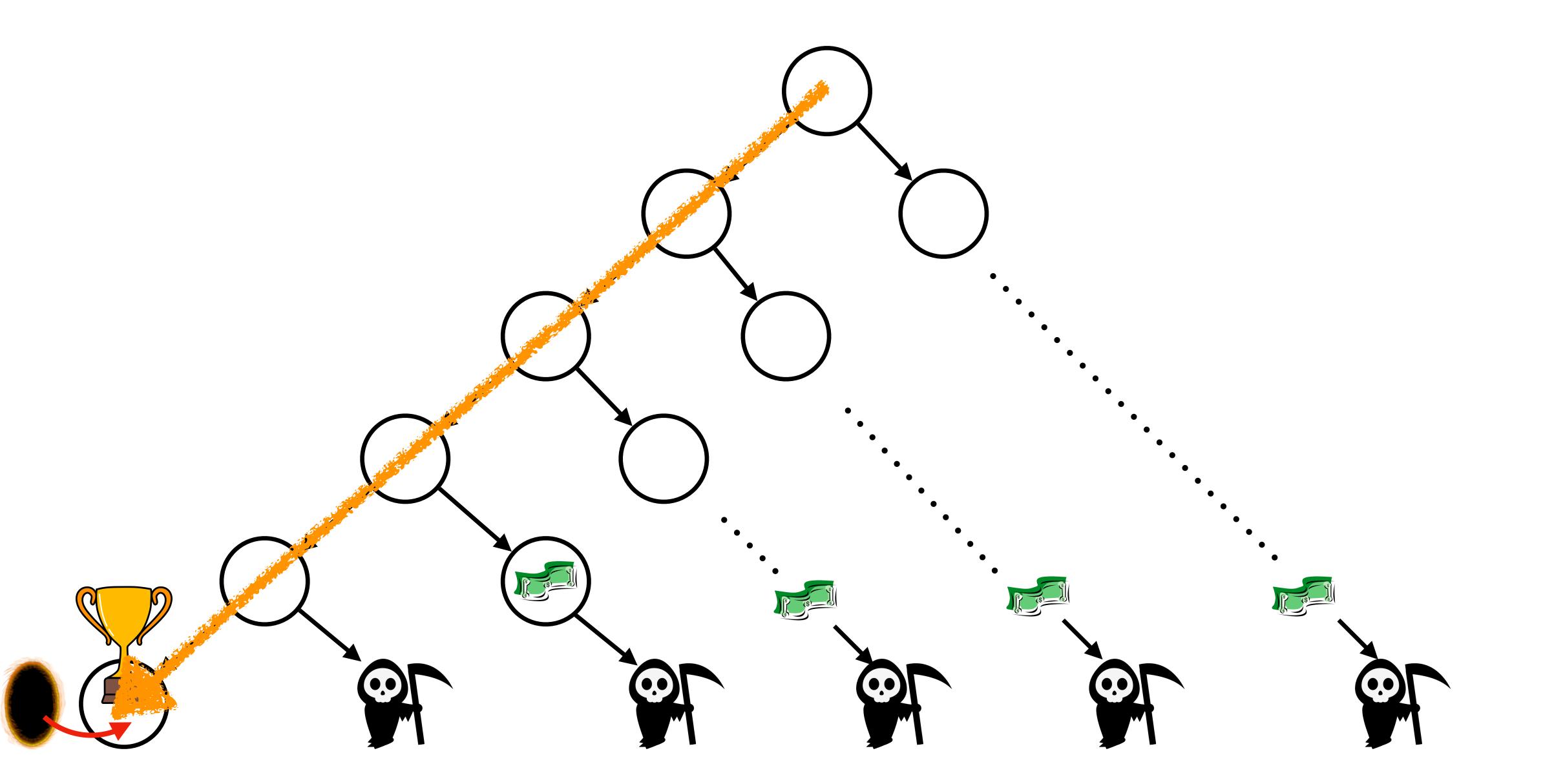
Run planning for exp(T)



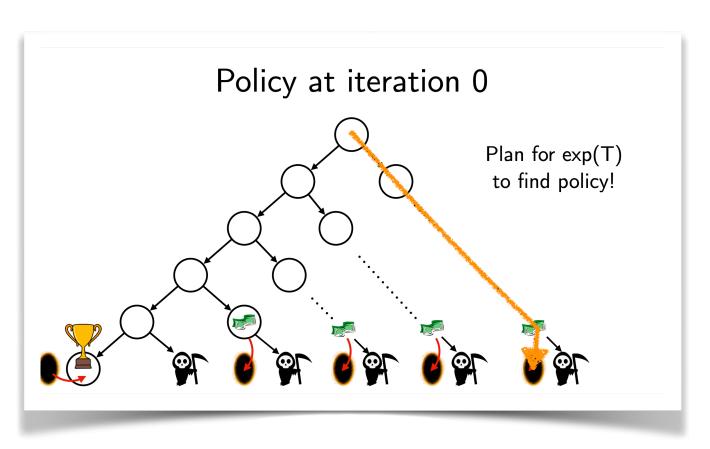
Policy at iteration 2

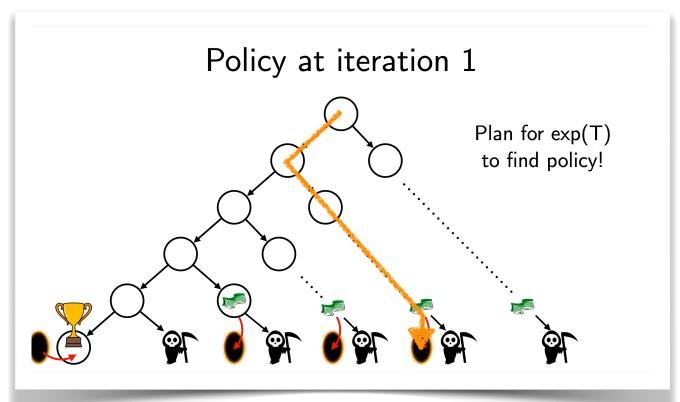


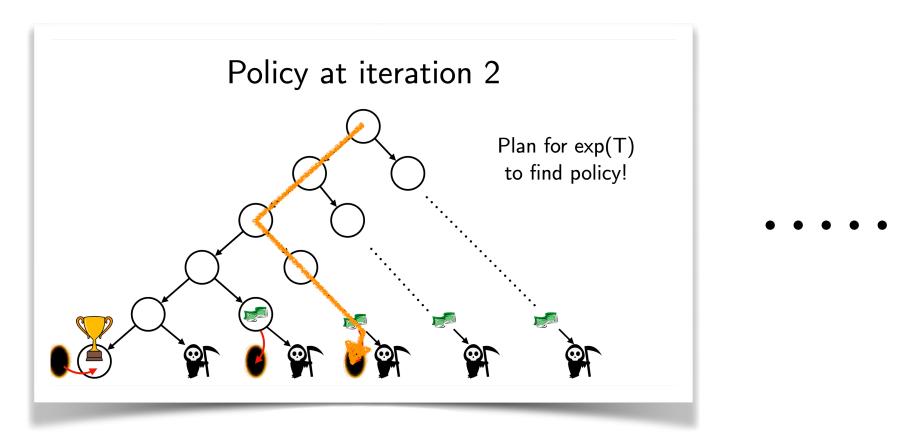




Exponential Complexity of Model Learning







Every iteration, planning is exp(T) computation

Repeat for many iterations to eliminate all portals

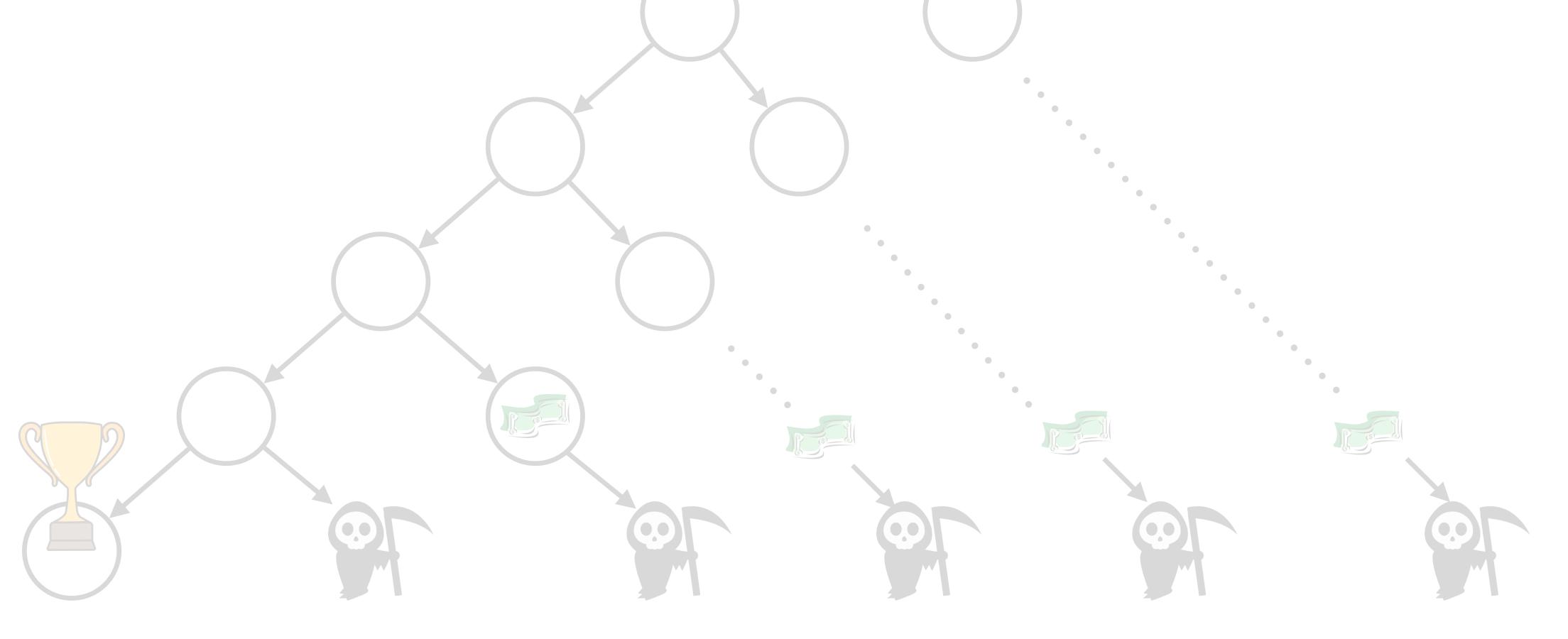
Key Insight.

Be Lazy.

Don't compute optimal plan.

Just do better than expert.

How do we turn planning Exp(T) -> Poly(T) ?



How do we turn planning Exp(T) -> Poly(T) ?

Restart from expert states

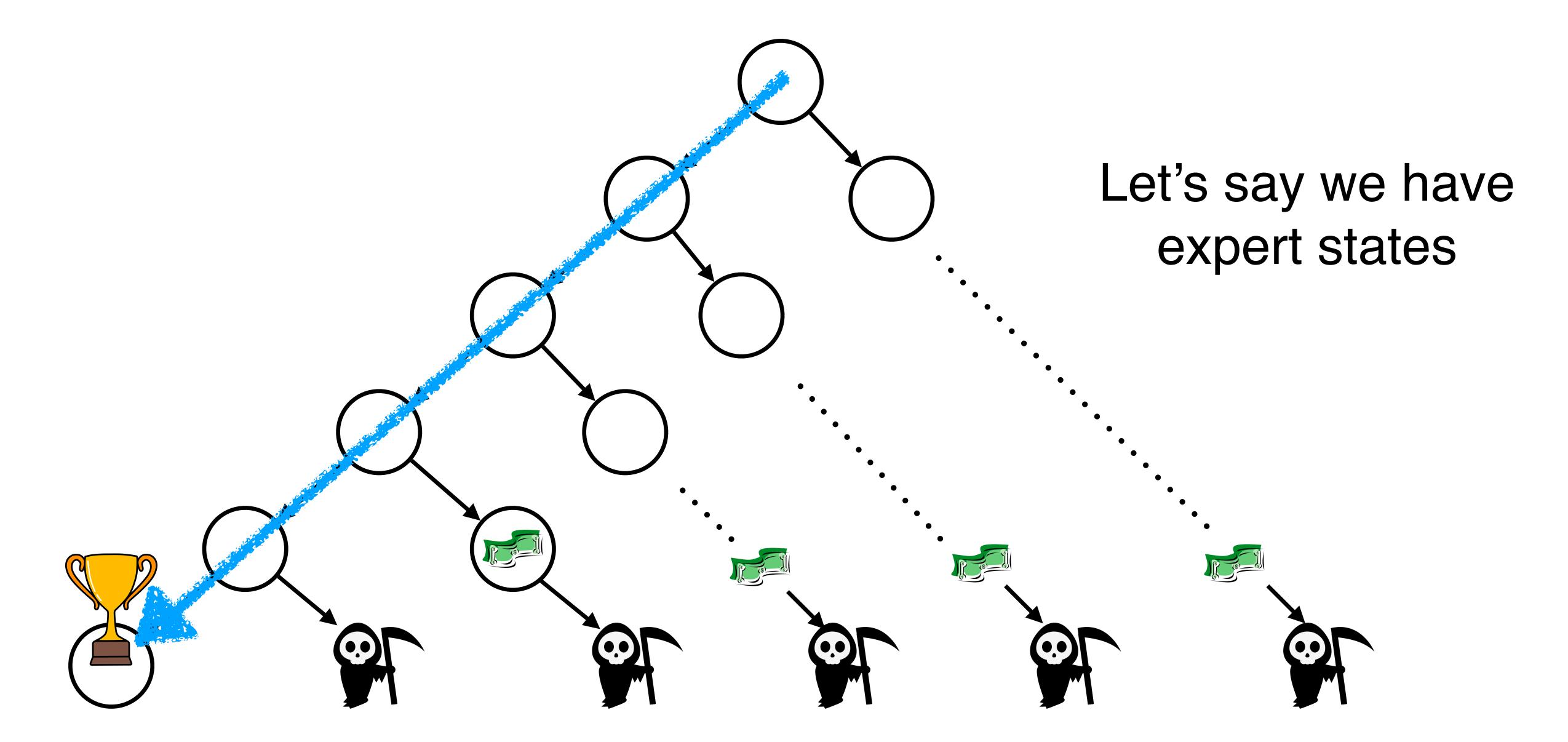
(Bagnell, et al. 2003)

Iterate from T-1 and go back in time

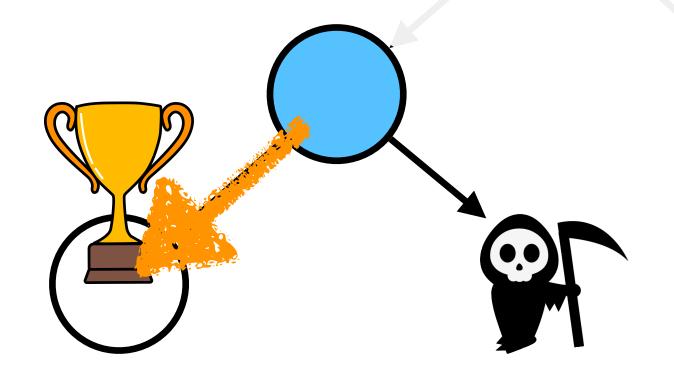
At each time t, restart from expert state s_t^*

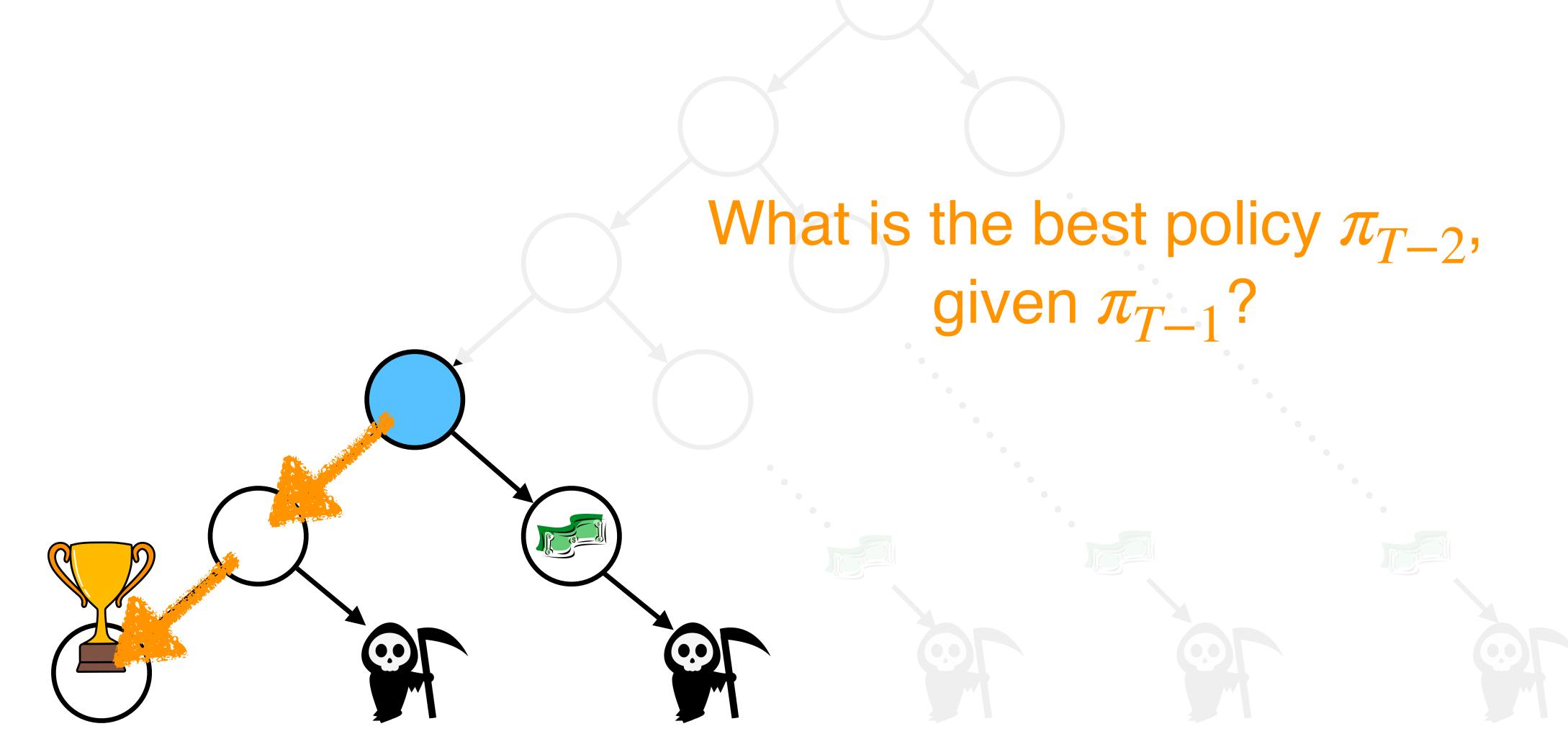
Solve for best policy π_t , given future policies $\pi_{t+1}, \pi_{t+2}, \cdots \pi_T$

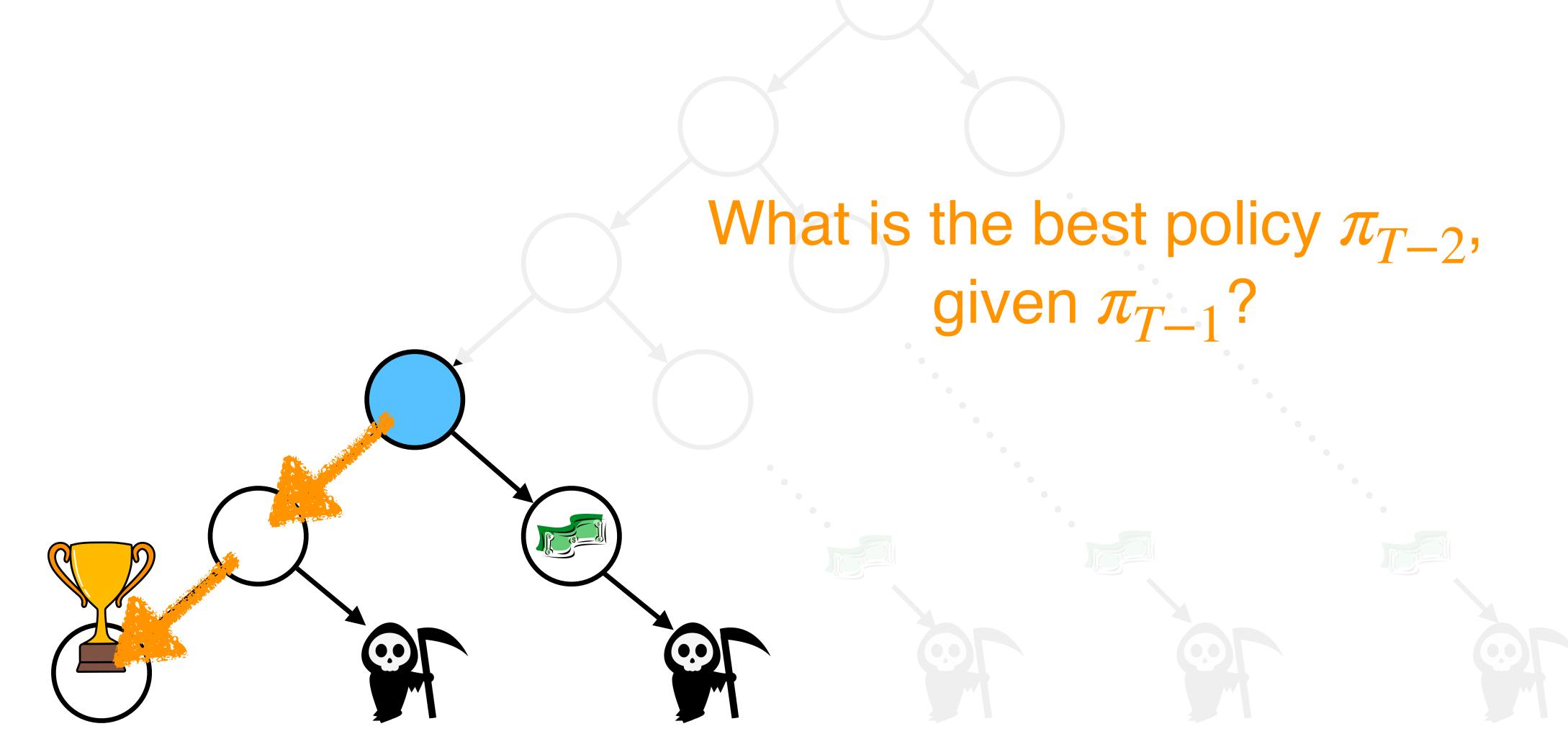
$$\pi_t = \arg\max_{\pi} r(s_t^*, \pi(s_t^*)) + \mathbb{E}_{s_{t+1}} V^{\pi_{t+1}:T}(s_{t+1})$$

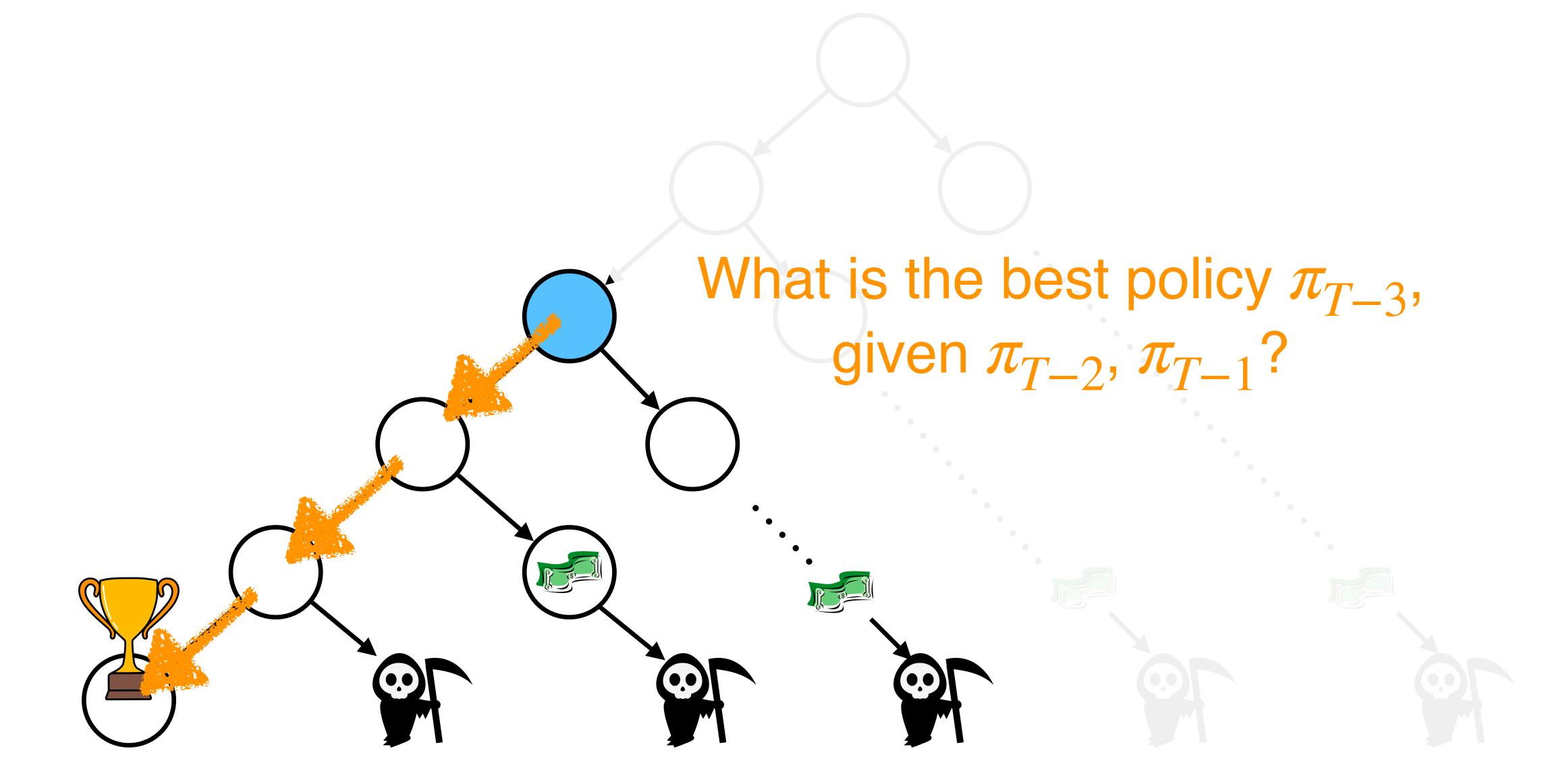


What is the best policy π_{T-1} ?

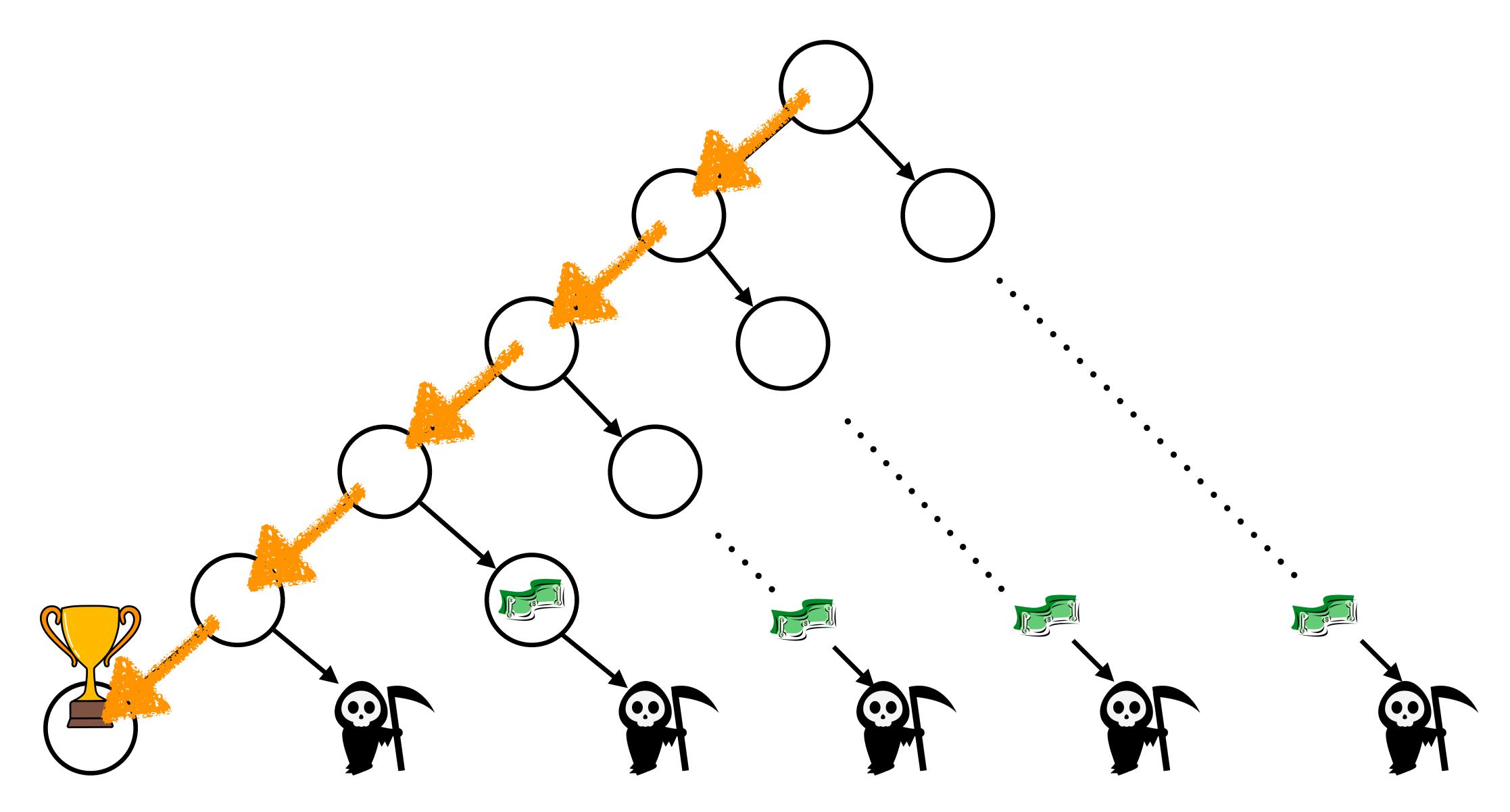




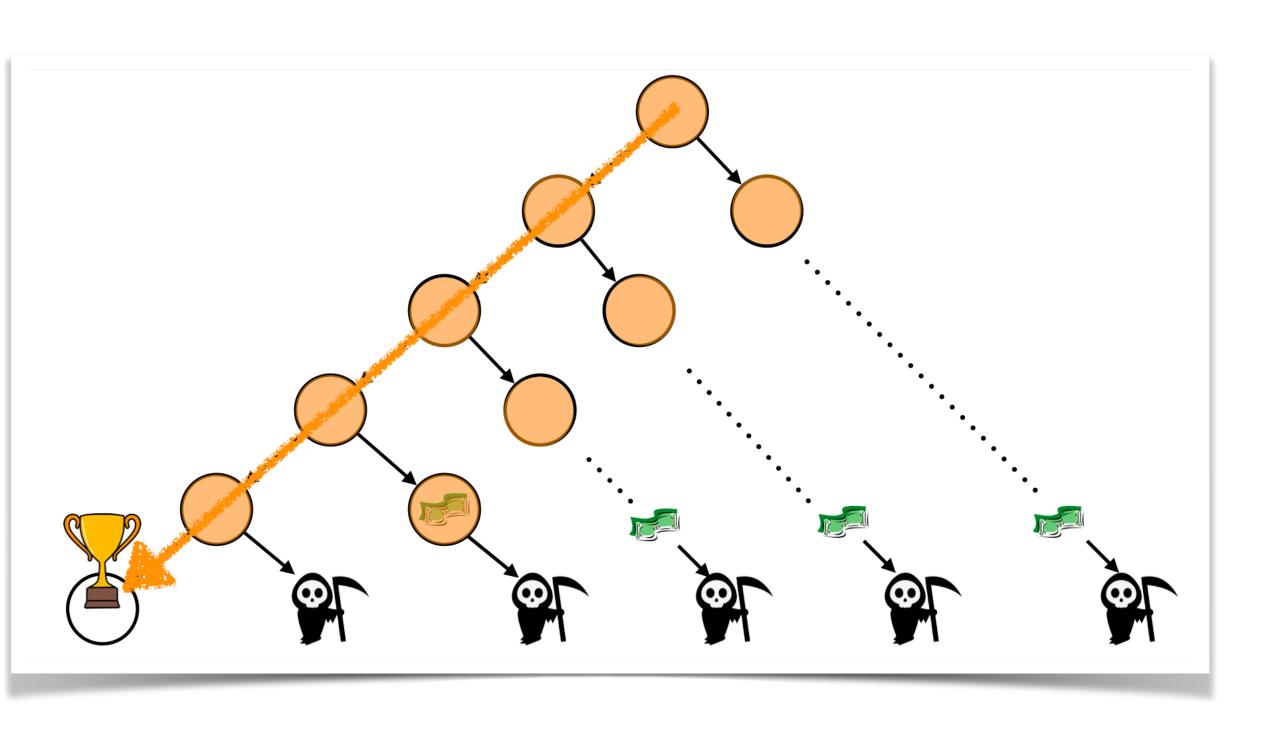


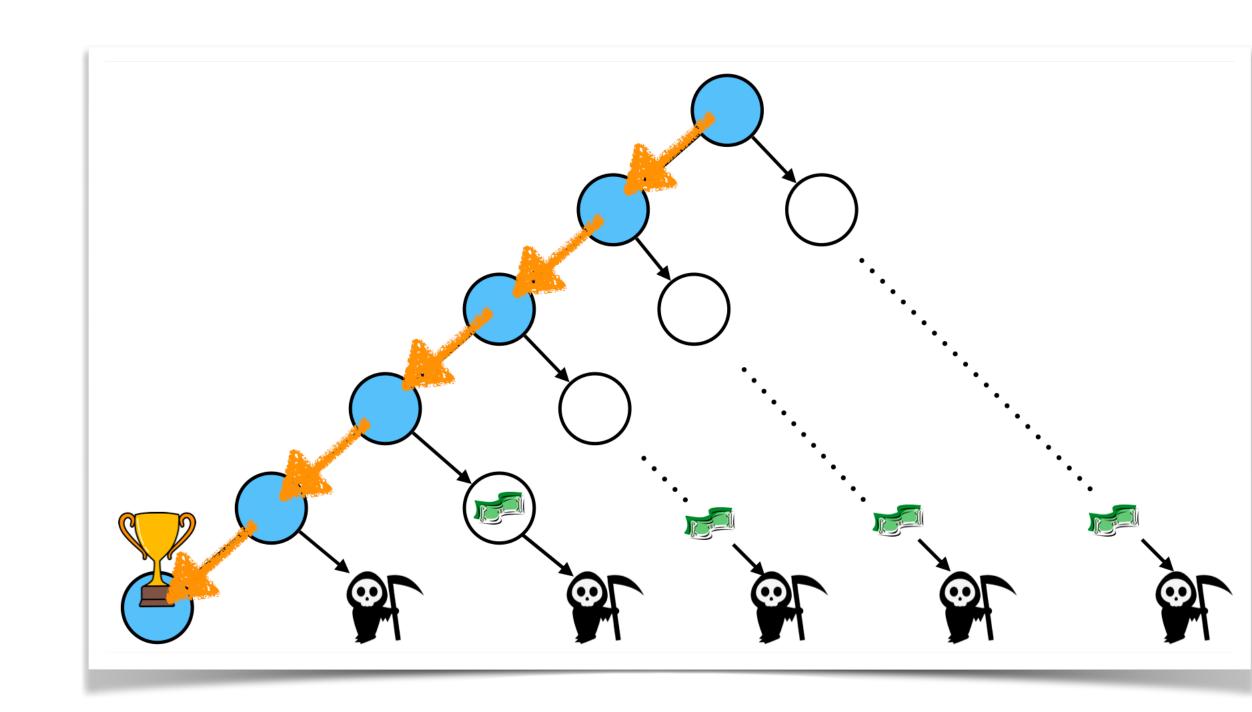


Only took poly(T) steps!



PSDP is Lazy



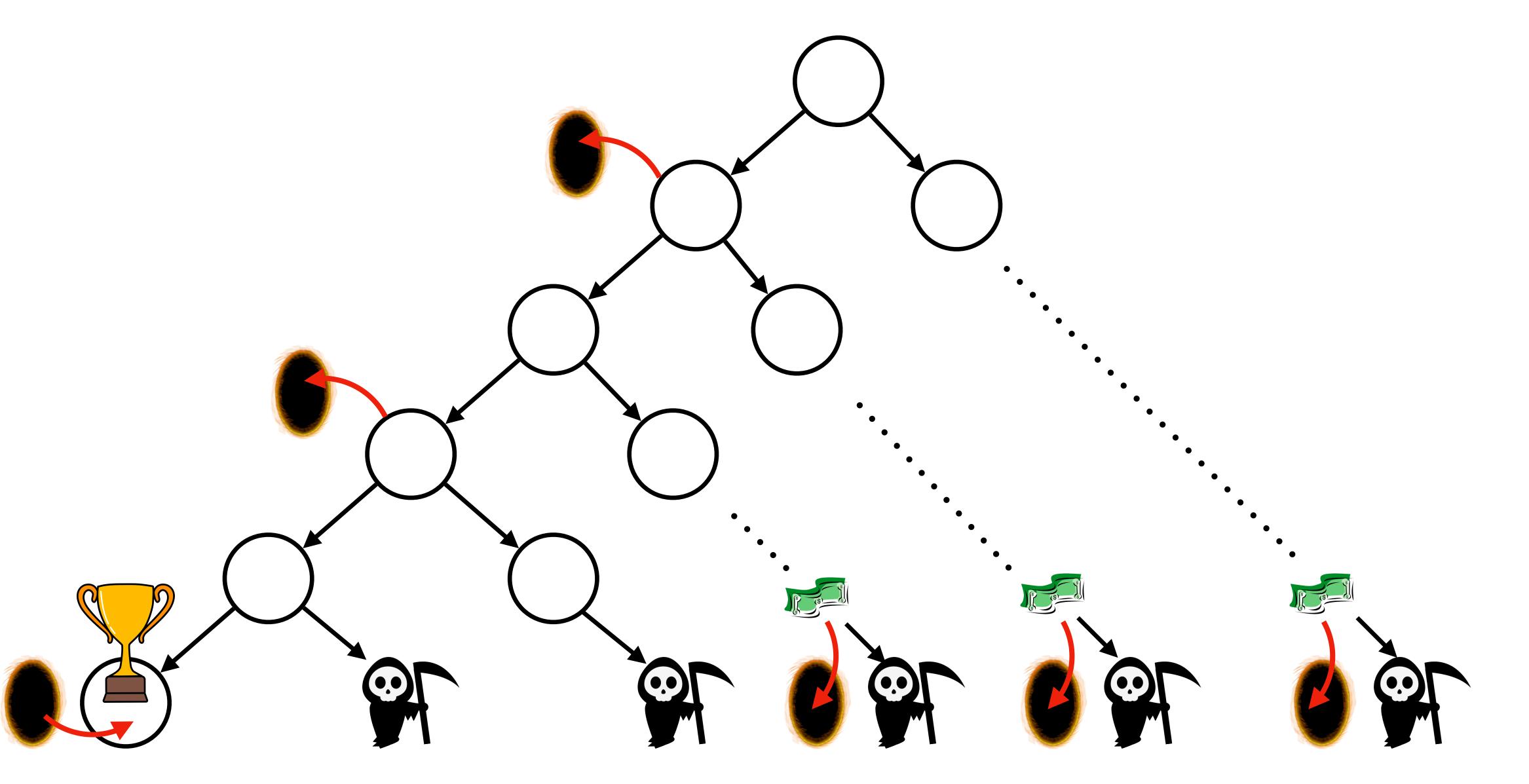


Instead of searching all states to find the best policy

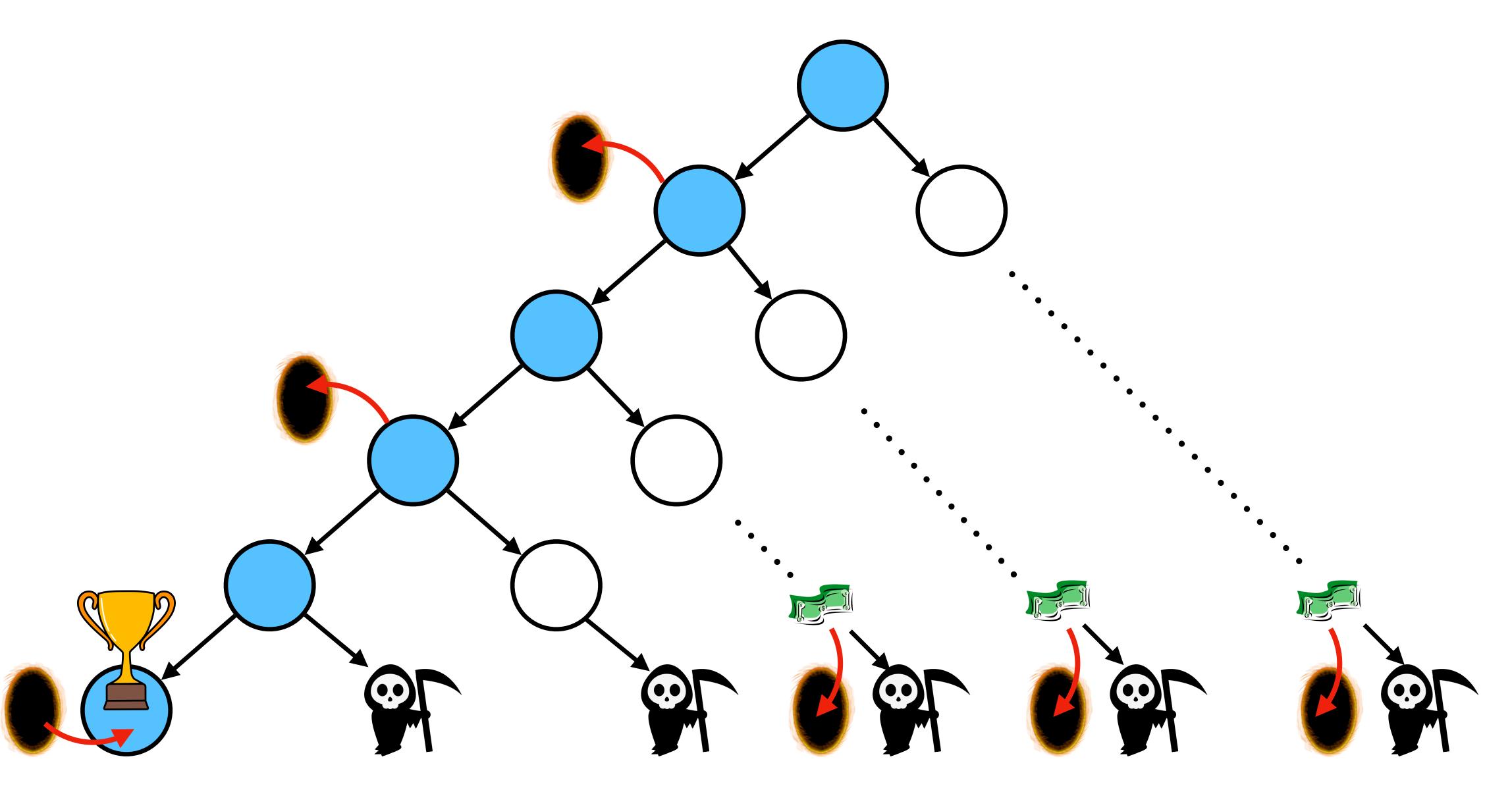
Just do better on states the expert visits

Is being lazy a good idea for model learning?

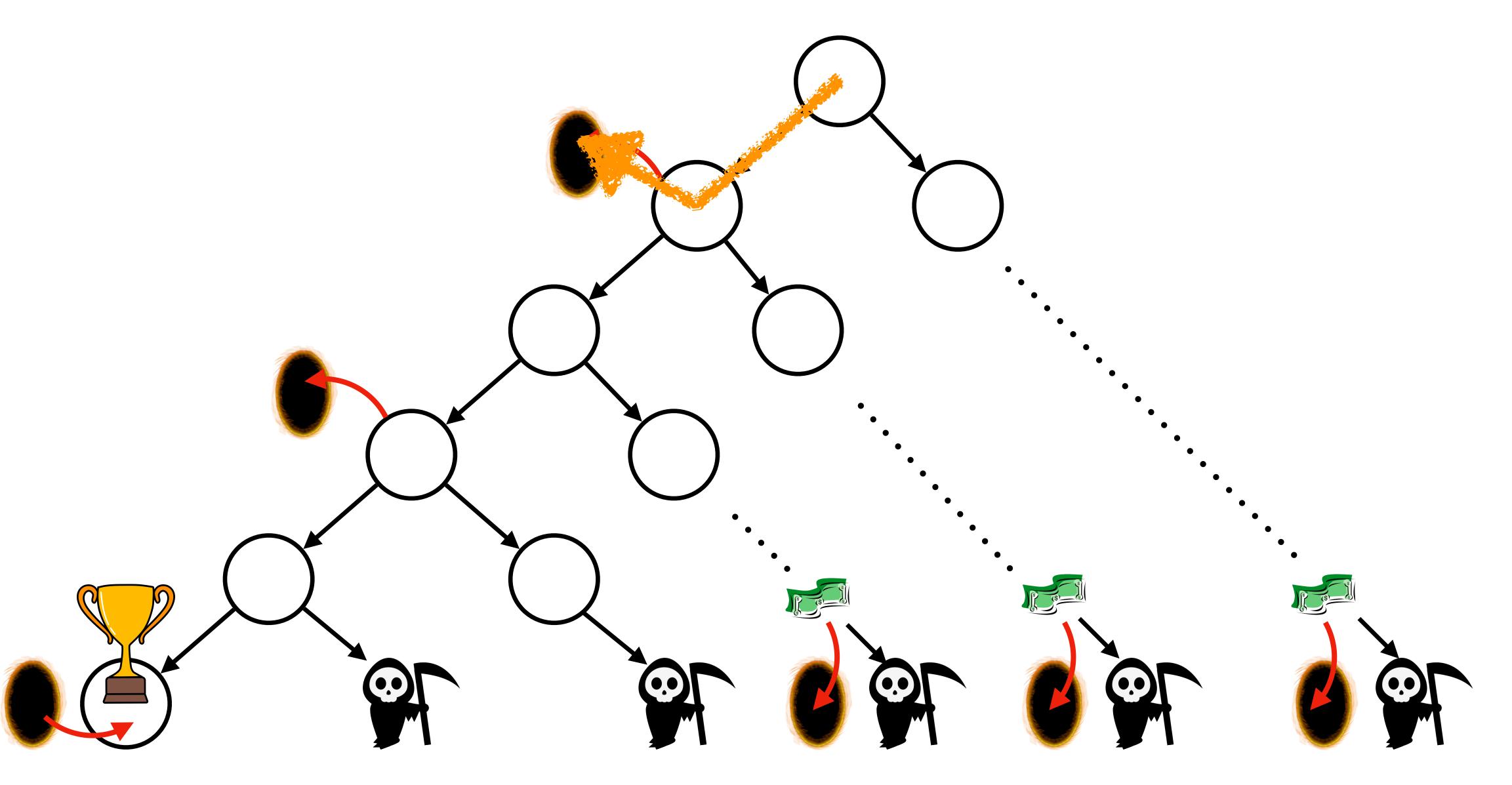
Model at iteration 0



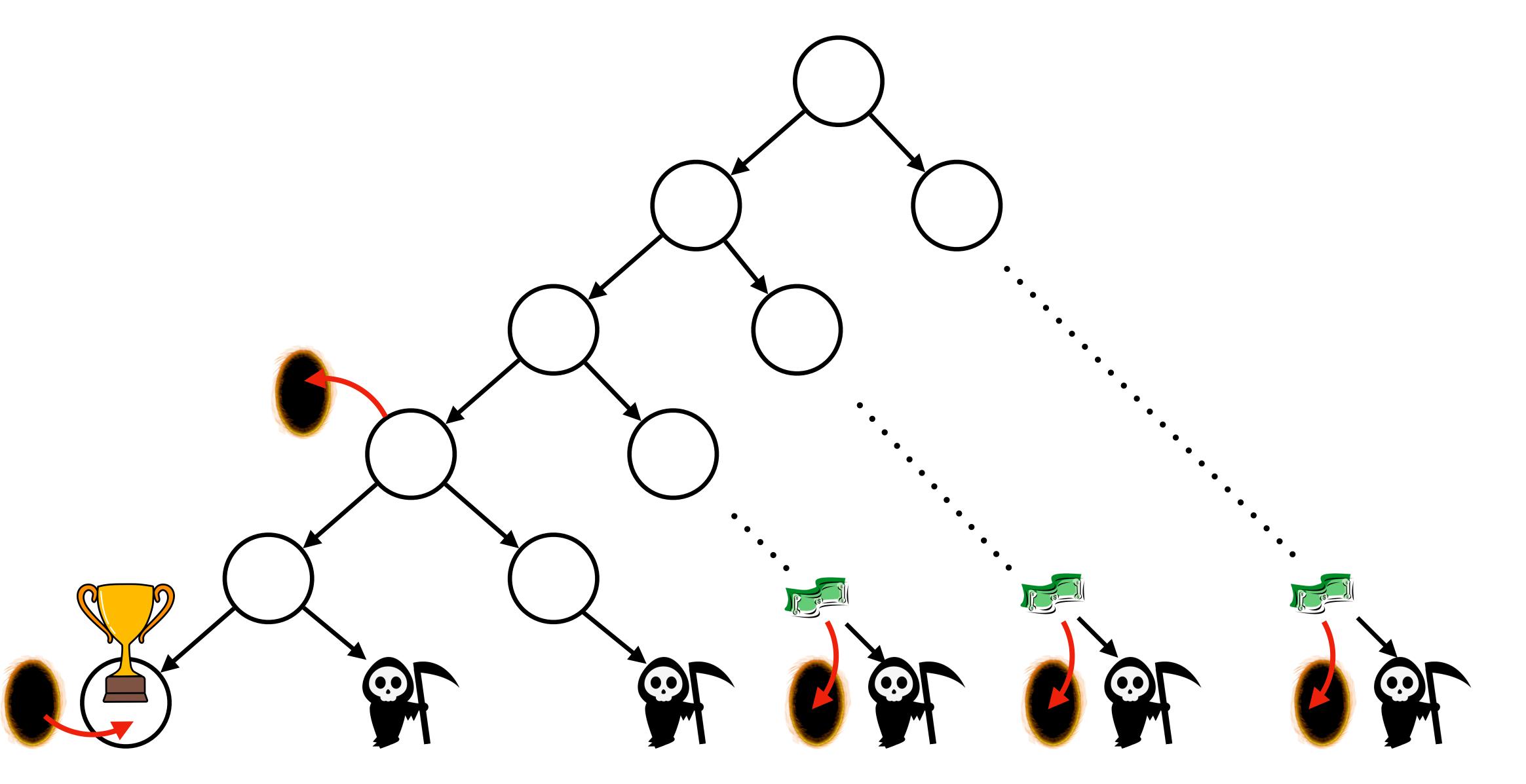
Run lazy policy search poly(T)



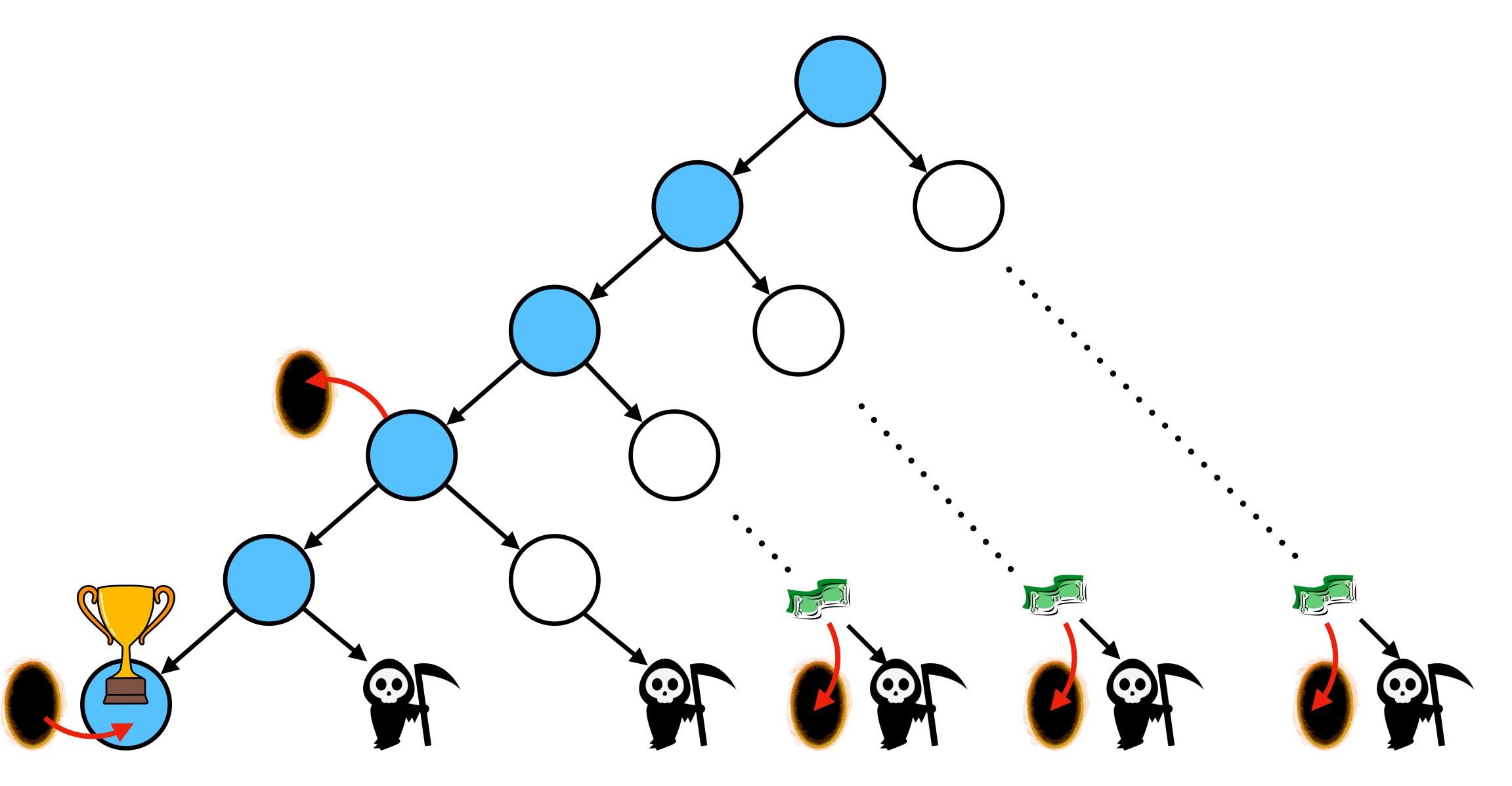
Policy at iteration 0



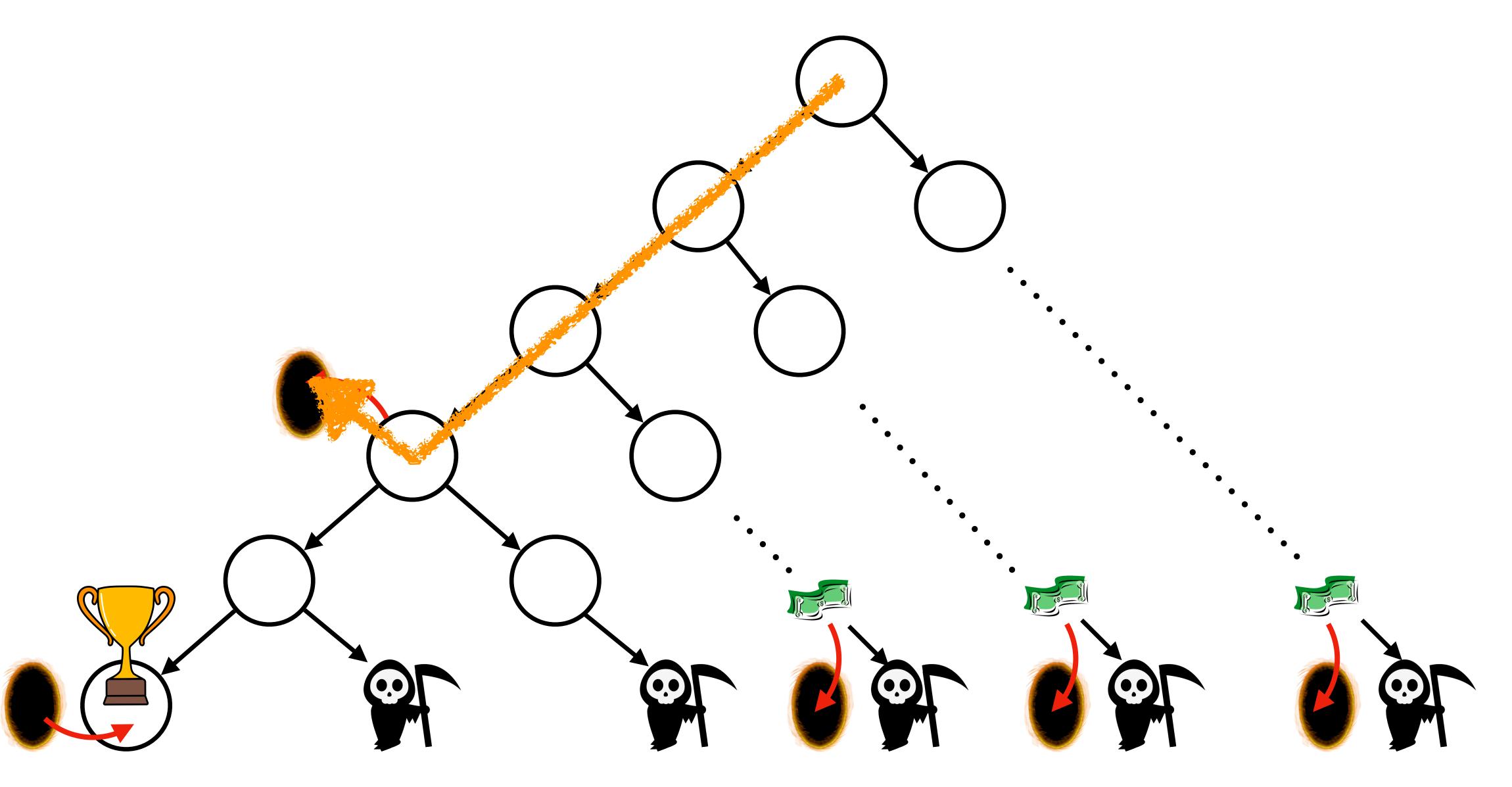
Model at iteration 1



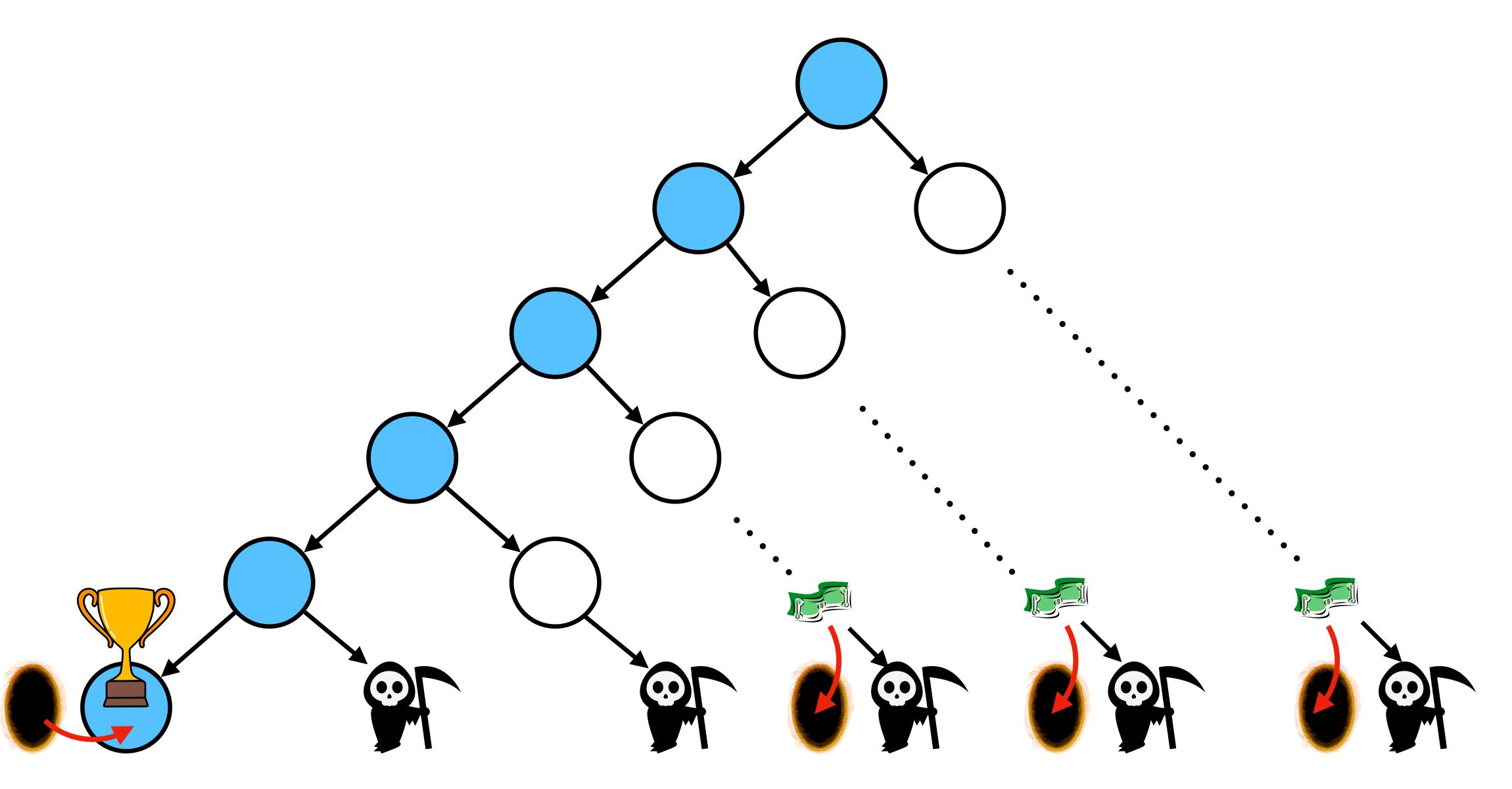
Run lazy policy search poly(T)



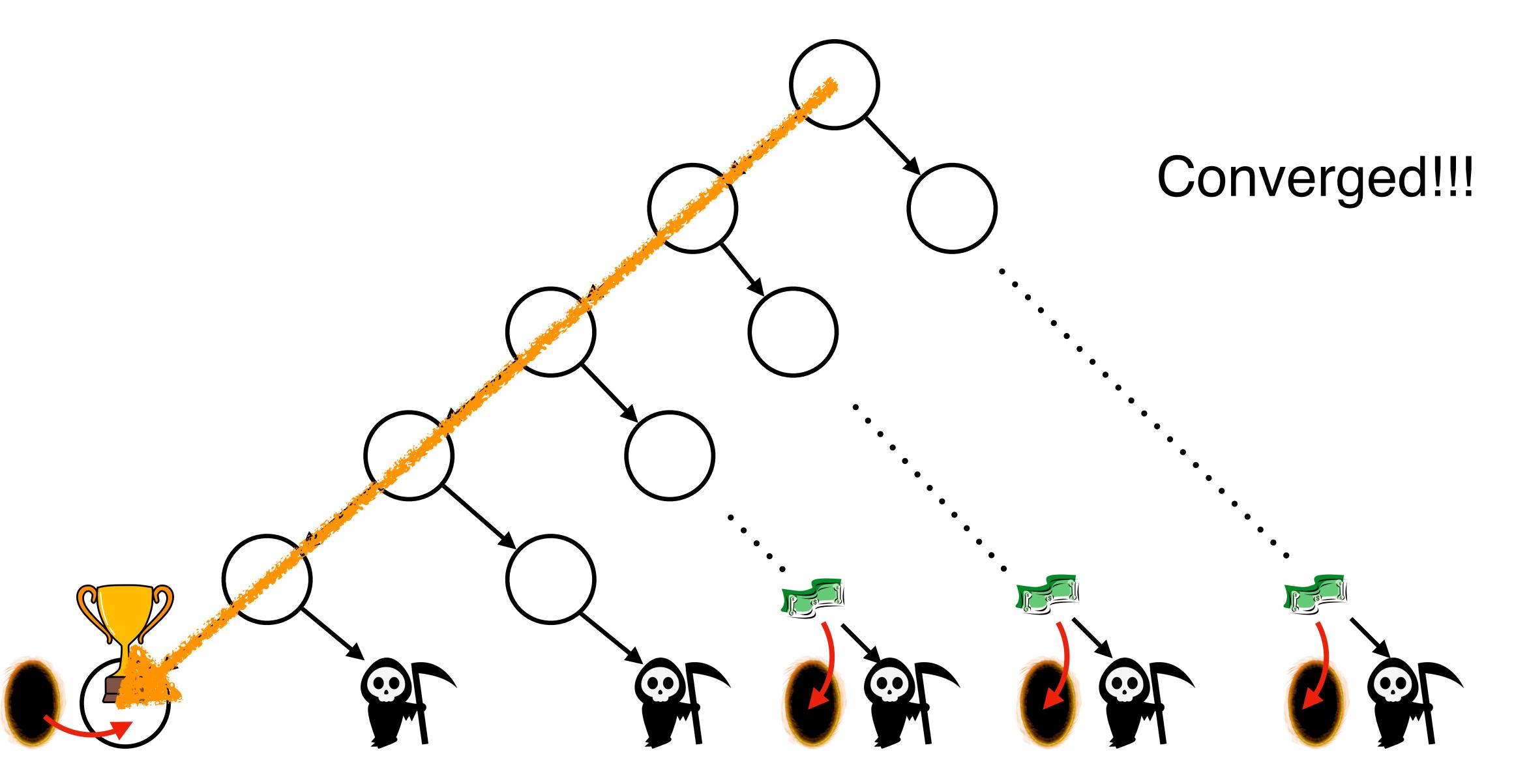
Policy at iteration 1



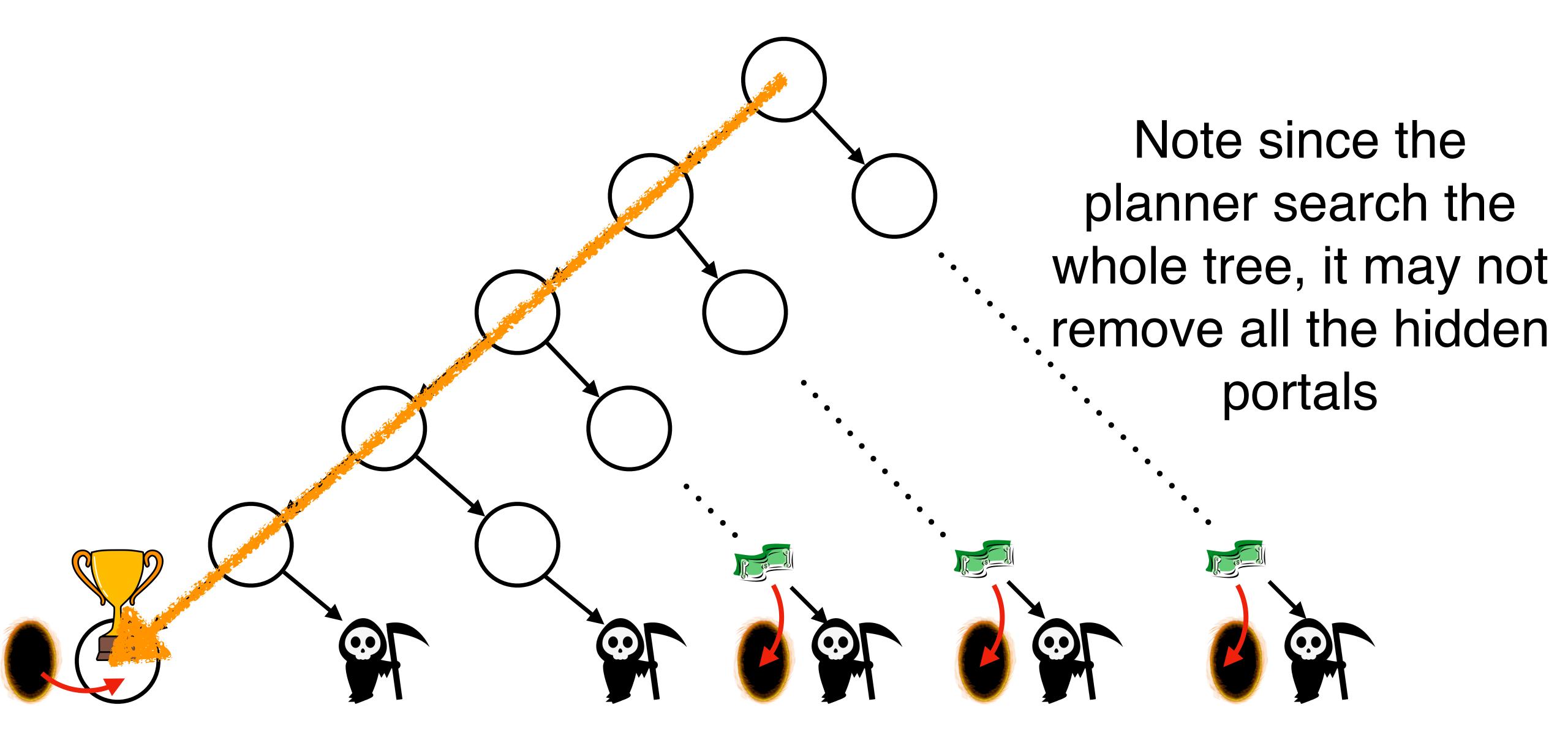
Run lazy policy search poly(T)



Policy at iteration 2



Final Model + Policy



But can we prove that lazy is good for model learning?

Lemma: Performance Difference via Advantage in Model

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$\leq \mathbb{E}_{s^* \sim \pi^*} \left[A^{\pi}(s^*, a^*) \right]$$

 $+ TV_{\max} \mathbb{E}_{s,a \sim \pi^*} || \hat{M}(s,a) - M(s,a) ||$

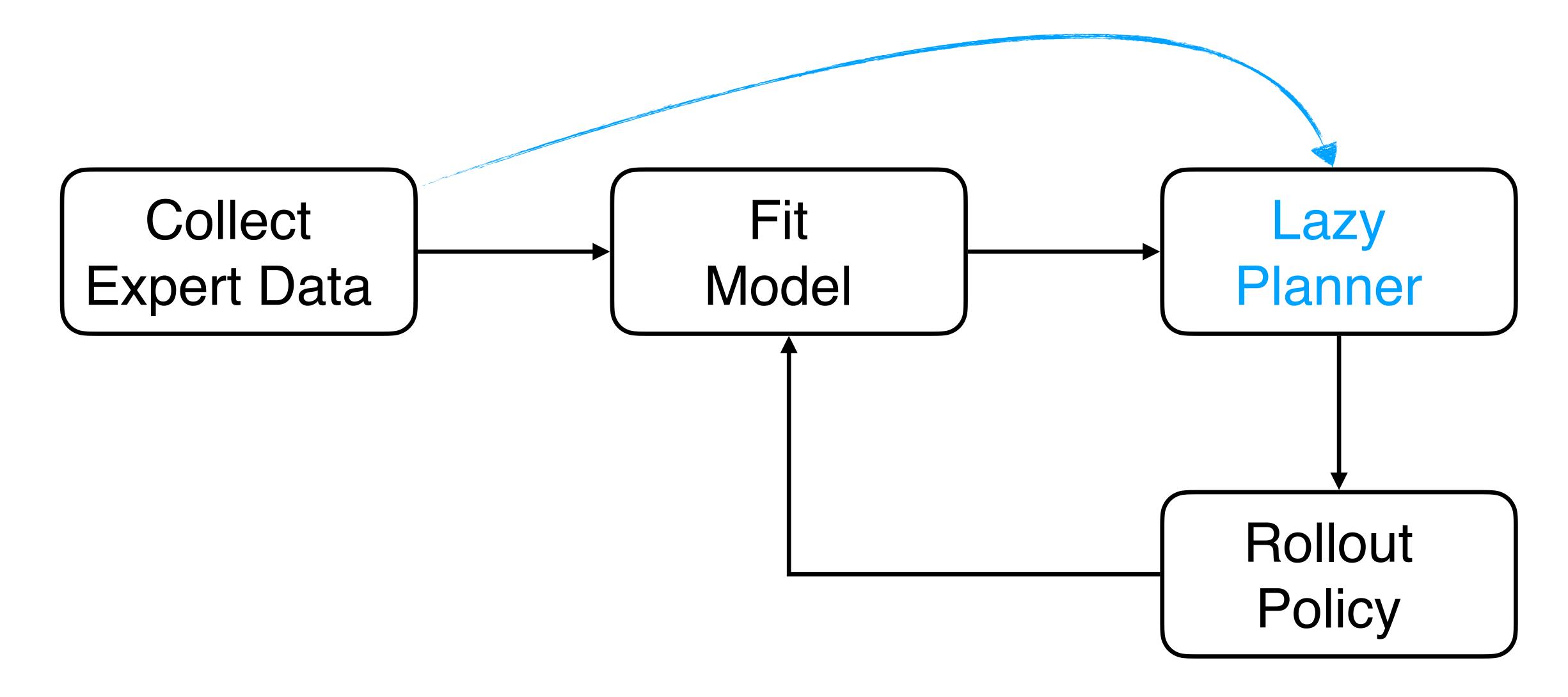
Advantage of expert in model

Model fit on expert states

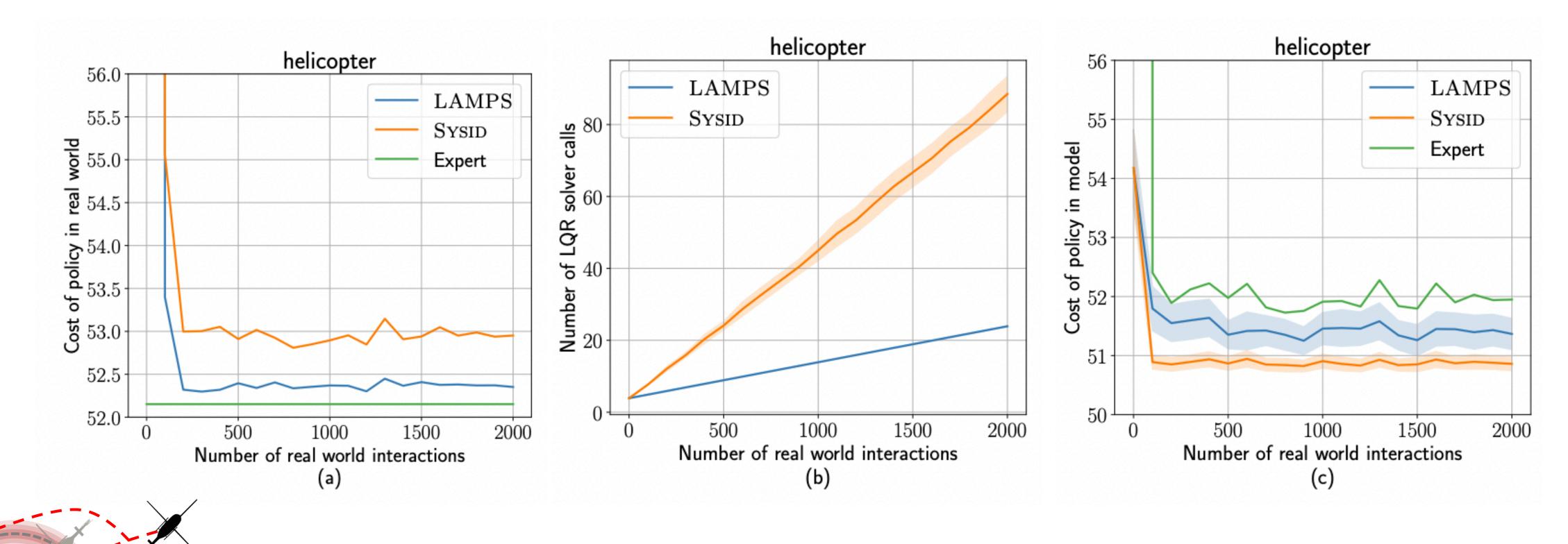
$$+ TV_{\max} \mathbb{E}_{s,a} |\hat{M}(s,a) - M(s,a)|$$

Model fit on policy states

Lazy Model-based Policy Search (LAMPS)



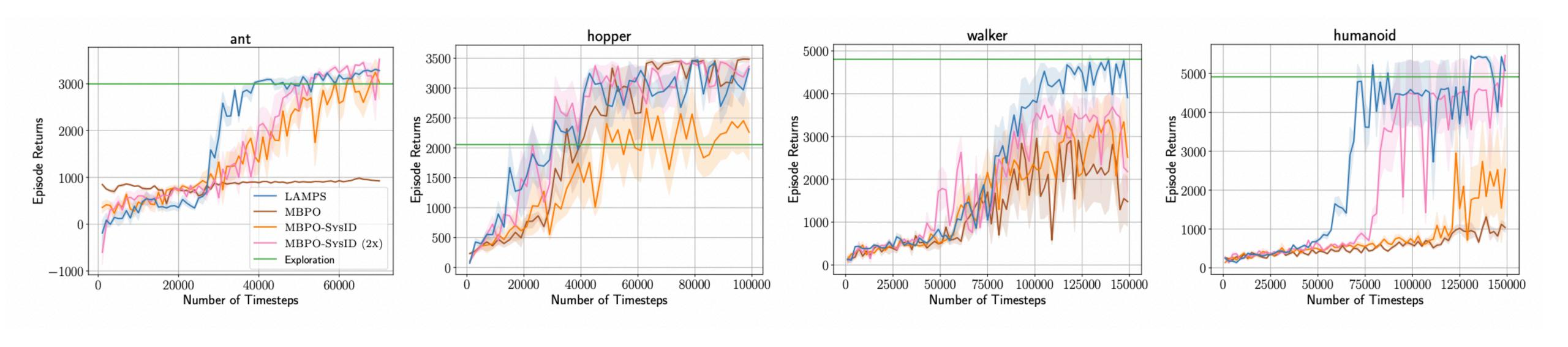
LAMPS finds a better policy with fewer samples + fewer computation



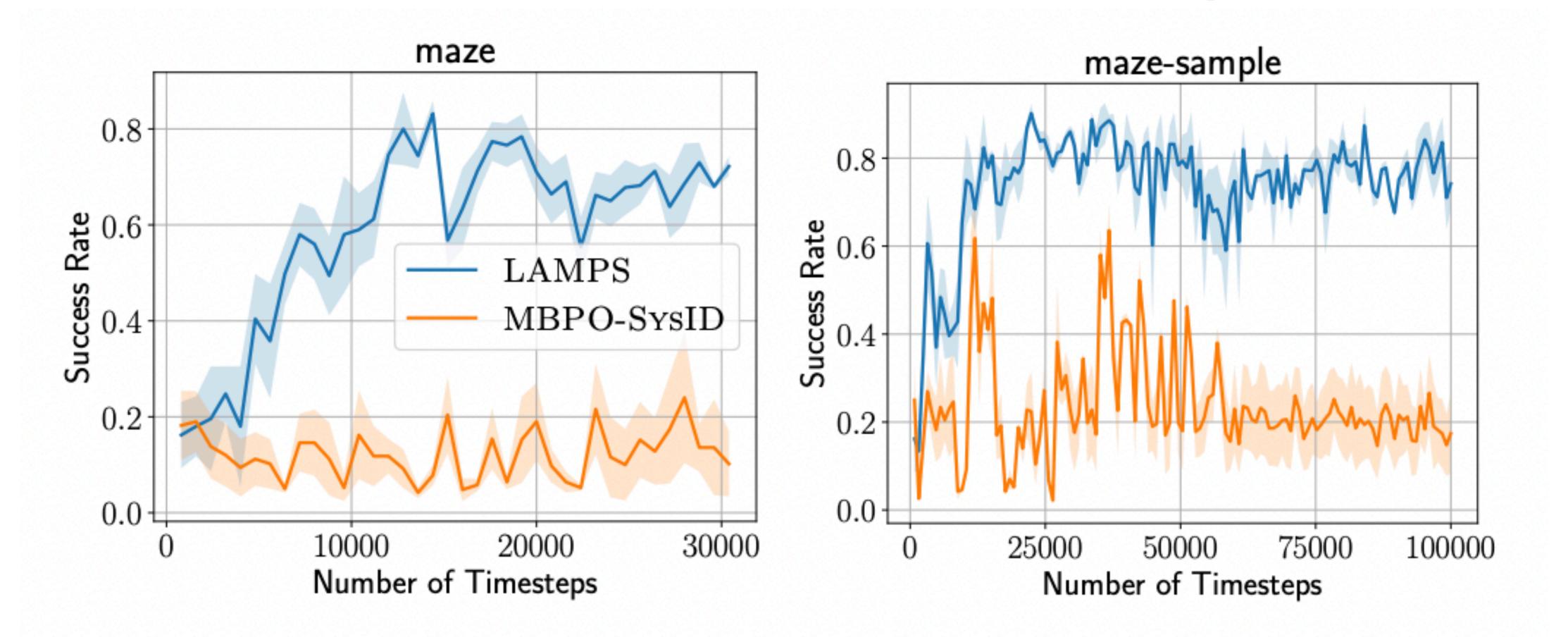
SysID: Use planner (iLQR)

LAMPS: Use PSDP (LQR on expert traj)

LAMPS converges faster than both SysID and MBPO



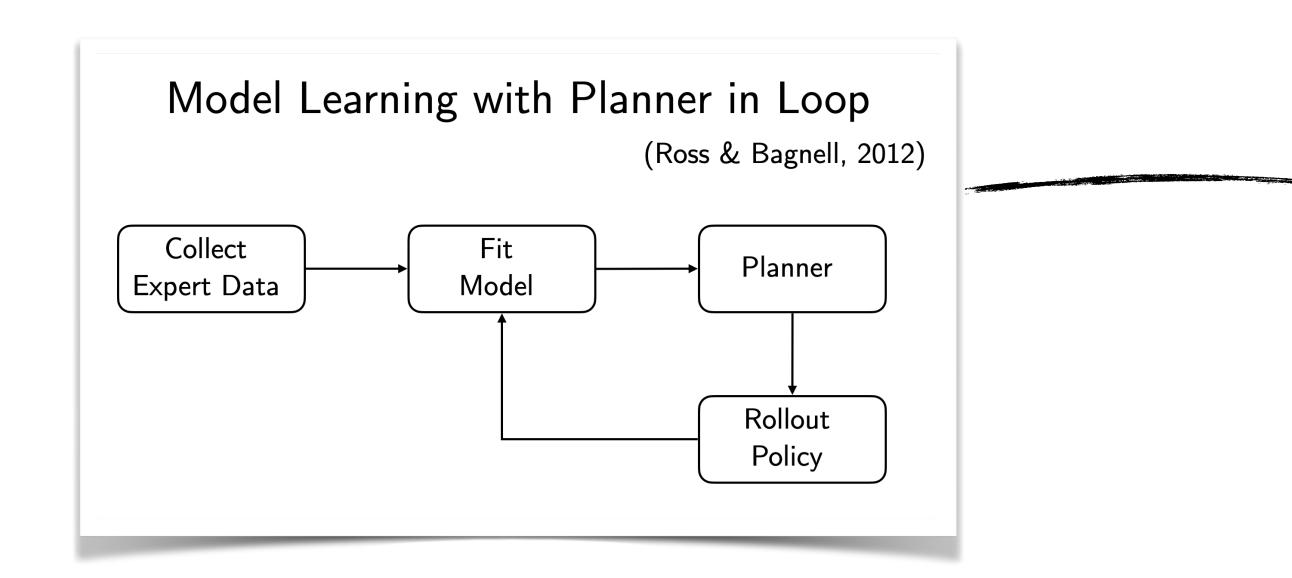
LAMPS makes better use of Expert Data

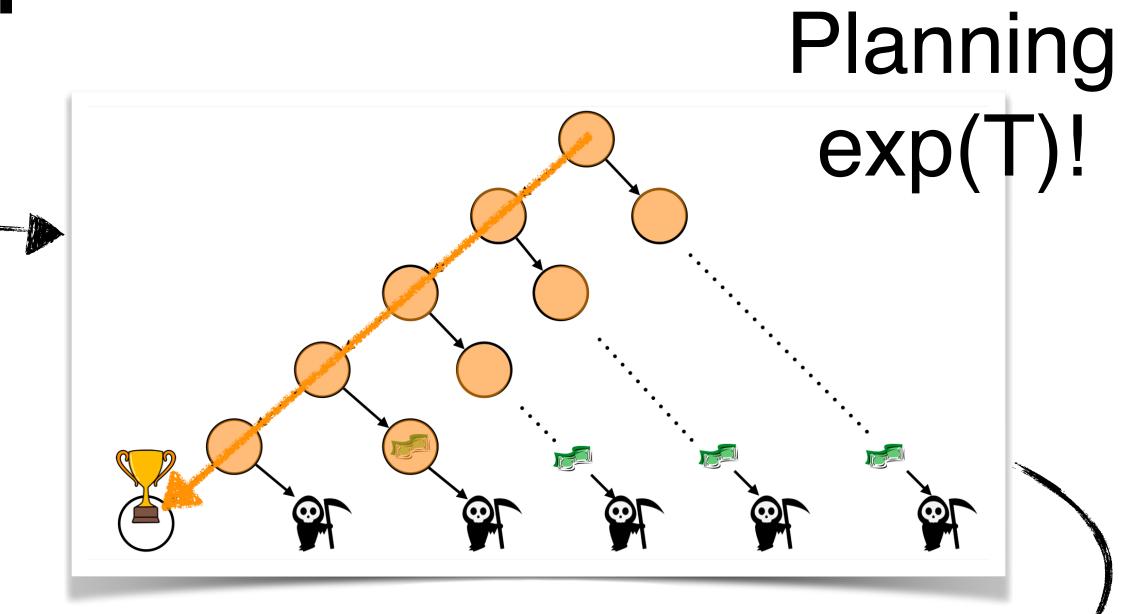


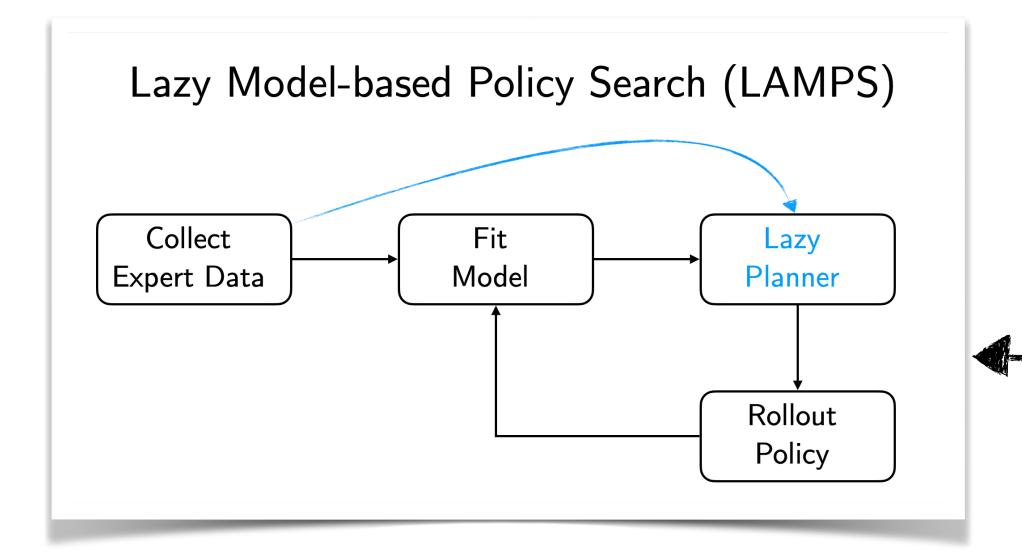
10000 samples

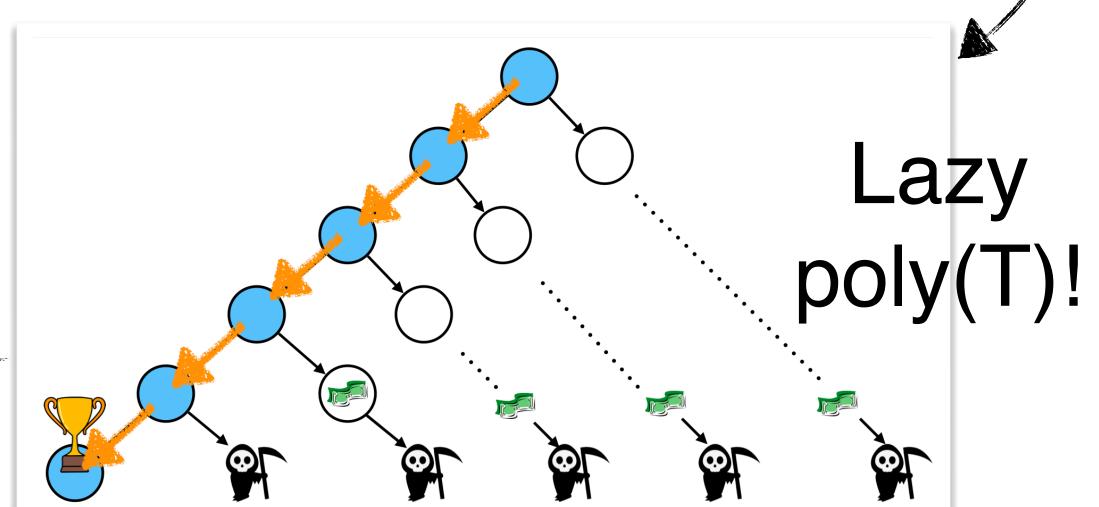
50000 samples

Recap







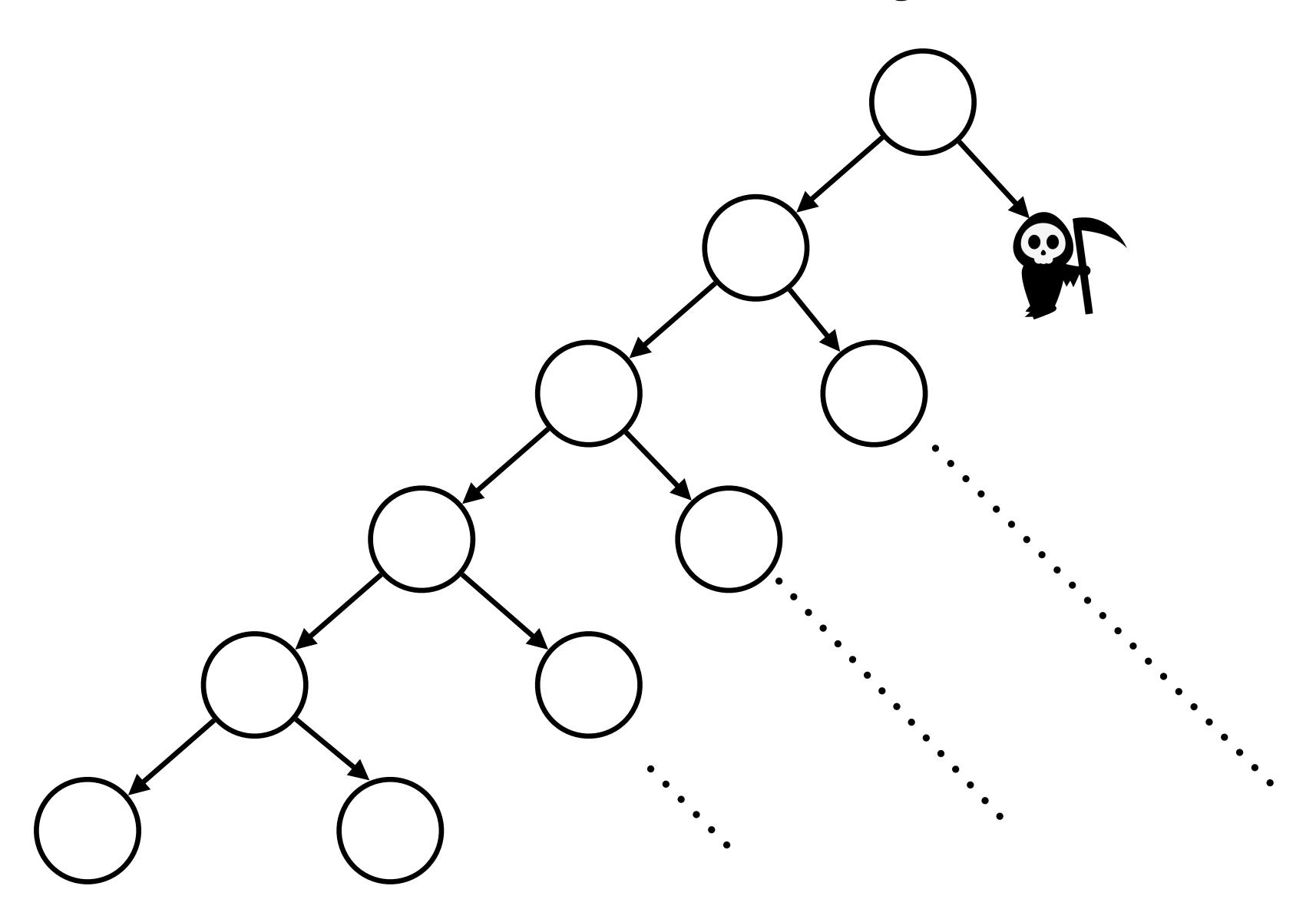


80

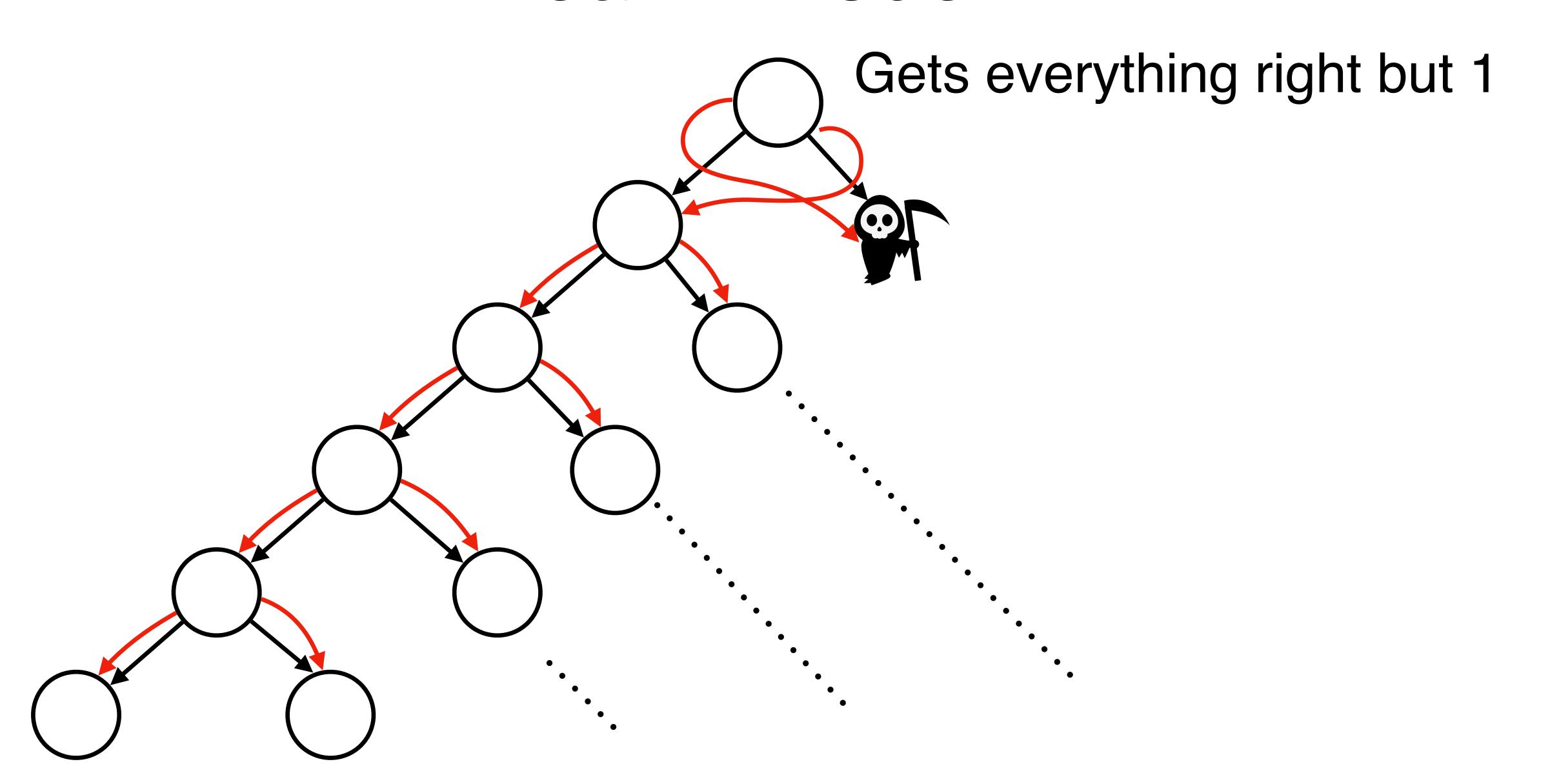
Another challenge.

Fitting model with L2 loss is mismatched with how good the resulting policy is

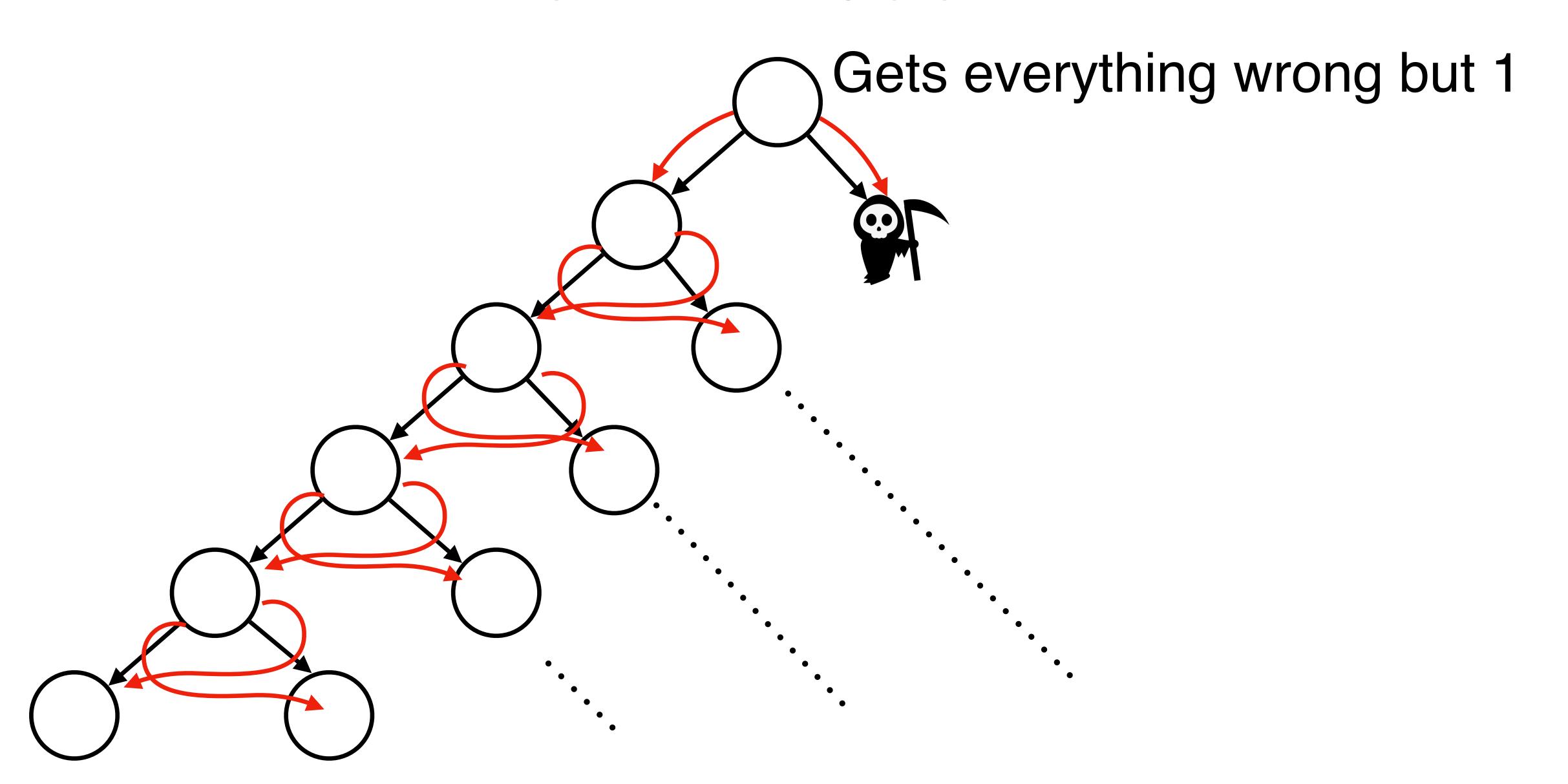
True Dynamics



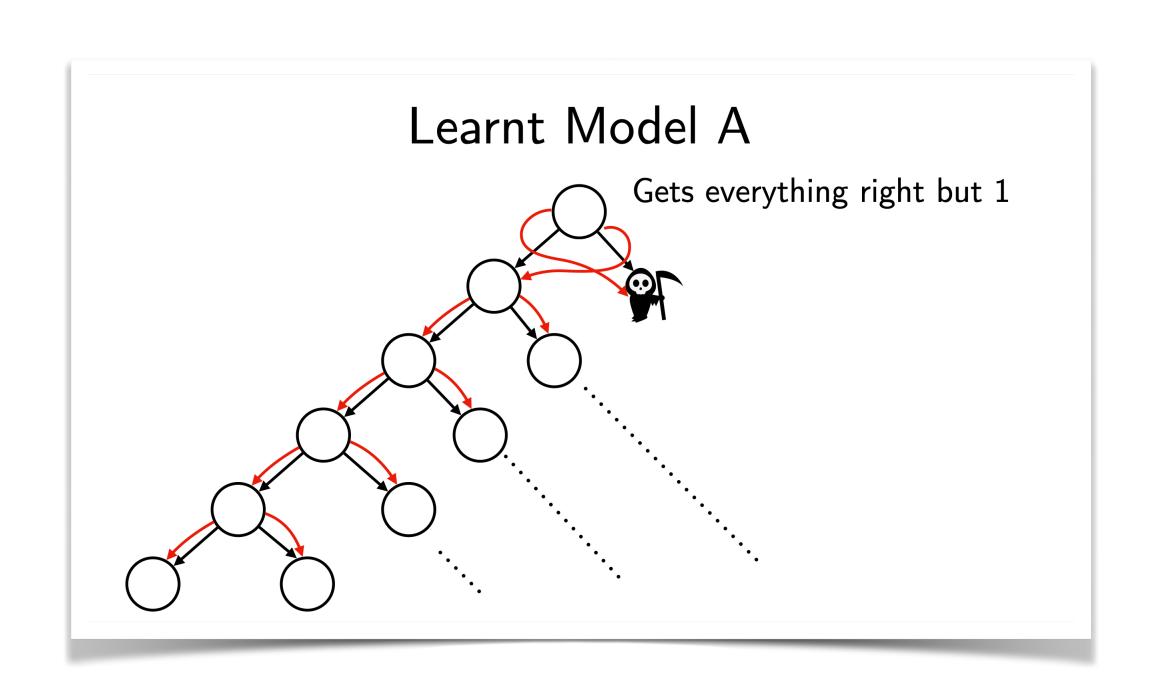
Learnt Model A

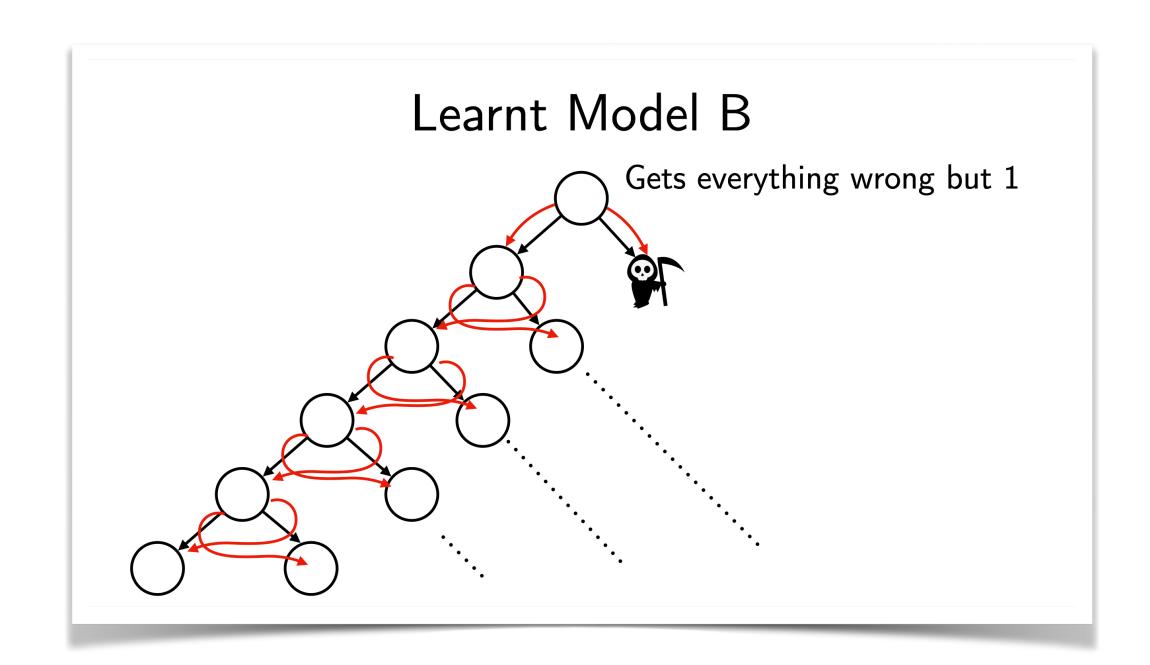


Learnt Model B



Which model has lower loss? Which one do we prefer?





Can we have change the loss for how we fit the model?

Our new lemma actually prescribes matching values!

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$=\mathbb{E}_{s^*\sim\pi^*}\left[A^{\hat{\pi}}(s^*,a^*)\right]$$

Advantage of expert in model

$$= \mathbb{E}_{s^* \sim \pi^*} \left[A^{\hat{\pi}}(s^*, a^*) \right] + T \mathbb{E}_{s, a \sim \pi^*} \left[E_{s' \sim \hat{M}} V^{\hat{\pi}}(s') - E_{s'' \sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on expert states

$$+ T \mathbb{E}_{s,a \sim \hat{\pi}} \left[E_{s' \sim \hat{M}} V^{\hat{\pi}}(s') - E_{s'' \sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on learner states

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$=\mathbb{E}_{s^*\sim\pi^*}\left[A^{\hat{\pi}}(s^*,a^*)\right]$$

Advantage of expert in model

$$+ T \mathbb{E}_{s,a\sim\pi^*} \left[E_{s'\sim\hat{M}} V^{\hat{\pi}}(s') - E_{s''\sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on expert states

$$+ T \mathbb{E}_{s,a \sim \hat{\pi}} \left[E_{s' \sim \hat{M}} V^{\hat{\pi}}(s') - E_{s'' \sim M^*} V^{\hat{\pi}}(s'') \right]$$

Value matching on learner states

Lemma: Performance Difference via Advantage in Model

$$J_{M^*}(\pi^*) - J_{M^*}(\hat{\pi})$$

$$\leq \mathbb{E}_{s^* \sim \pi^*} \left[A^{\pi}(s^*, a^*) \right]$$

 $+ TV_{\max} \mathbb{E}_{s,a \sim \pi^*} || \hat{M}(s,a) - M(s,a) ||$

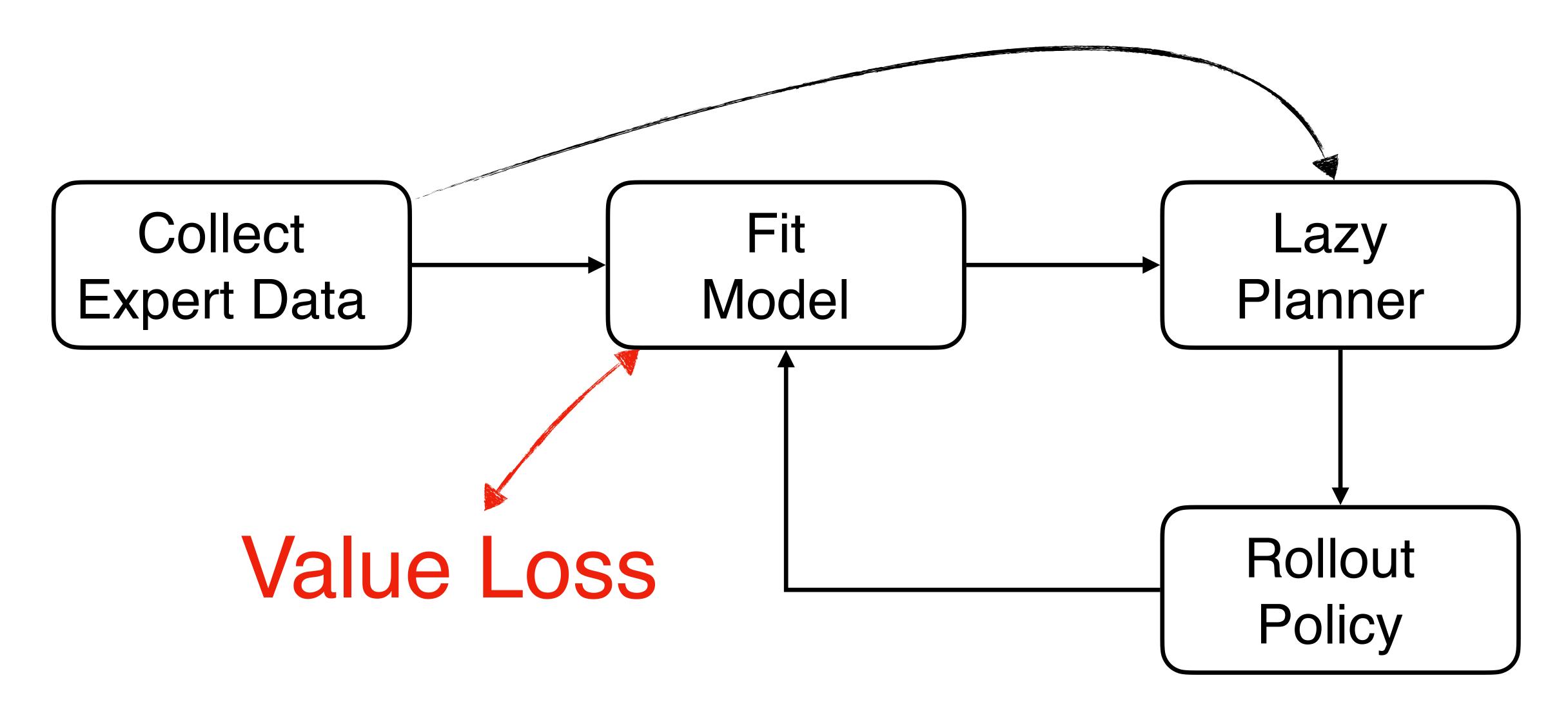
Advantage of expert in model

Model fit on expert states

$$+ TV_{\max} \mathbb{E}_{s,a} |\hat{M}(s,a) - M(s,a)|$$

Model fit on policy states

LAMPS with Moment Matching (LAMPS-MM)



Solution 1:

Be lazy, restart from expert states Solution 2: Match value loss