

Contrast with Reconstruct Contrastive 3D Representation Learning Guided by Generative Pretraining

Zekun Qi † Runpei Dong † Guofan Fan Zheng Ge Xiangyu Zhang Kaisheng Ma Li Yi

International Conference on Machine Learning (ICML) July 23rd – 27th, 2023, Honolulu Hawaii

> Zekun Qi 24 July 2023

Paradigm Comparison

ContrastiveSimCLR, MoCo, PointContrastLearningCLIP, ALIGN, FLIP, GLIP, ULIP

Source: Learning Transferable Visual Models From Natural Language Supervision Masked Autoencoders Are Scalable Vision Learners

Pattern differences

Representation over-fitting (Contrastive)

• contrastive models can easily find shortcuts with trivial representations

Data filling(Generative)

• generative models are less data-hungry that learn decent initialization with very few data

Pattern differences

Global Representation (Contrastive)

• Pay more attention to longrange information

Local Representation (Generative)

• Pay more attention to short-range information

Unified View

Contrast with Reconstruct

Block Design

X: input embeddings (GxC)
Q: global queries (N×C)

def block(X, Q):

X = MHSA(norm(X)) + XQ = MHCA(norm(Q), X.detach()) + Q

X = FFN(norm(X)) + X Q = FFN(norm(Q)) + Q

return X, Q

- Generative student can serve as a powerful regularization technique to alleviate *over-fitting issue* of the contrastive student.
- The *data-filling issue* of the generative student is alleviated due to the promising scaling capacity of the contrastive student.
- ReCon circumvents the discrepancies in *attention patterns* between generative learning and contrastive learning through a simple two-stream network architecture.
- Due to the equal number of global query tokens and contrastive teachers, the increase in FLOPs is very small compared to the single-stream network.

Downstream Tasks

Method	#P	#F	ΡΤ	MD	ScanObjectNN			ModelNet40	
					OBJ_BG	OBJ_ONLY	PB_T50_RS	1k P	8k P
Supervised Learning Only									
• PointNet (Qi et al., 2017a)	3.5	0.5	×	×	73.3	79.2	68.0	89.2	90.8
• PointNet++ (Qi et al., 2017b)	1.5	1.7	×	×	82.3	84.3	77.9	90.7	91.9
• DGCNN (Wang et al., 2019)	1.8	2.4	×	×	82.8	86.2	78.1	92.9	_
• PointCNN (Li et al., 2018)	0.6	-	×	\times	86.1	85.5	78.5	92.2	-
• SimpleView (Goyal et al., 2021)	-	-	×	×	-	-	80.5±0.3	93.9	-
• MVTN (Hamdi et al., 2021)	11.2	43.7	×	×	92.6	92.3	82.8	93.8	-
• PCT (Guo et al., 2021)	2.88	2.3	×	×	-	-	-	93.2	-
• PointMLP (Ma et al., 2022)	12.6	31.4	×	×	-	-	85.4±0.3	94.5	H.
• PointNeXt (Qian et al., 2022)	1.4	3.6	×	×	_		87.7±0.4	94.0	_
• P2P-HorNet (Wang et al., 2022)	-	34.6	\checkmark	\checkmark	-	-	89.3	94.0	H
with Single-Modal Self-Supervised Representation Learning (FULL)									
• Transformer (Vaswani et al., 2017)	22.1	<mark>4.</mark> 8	×	×	83.04	84.06	79.11	91.4	91.8
• Transformer [†] (Vaswani et al., 2017)	43.6	5.3	×	×	84.90	86.12	81.64	91.6	92.0
• Point-BERT (Yu et al., 2022b)	22.1	4.8	×	×	87.43	88.12	83.07	93.2	93.8
• Point-MAE (Pang et al., 2022)	22.1	4.8	×	×	90.02	88.29	85.18	93.8	94.0
• Point-M2AE (Zhang et al., 2022b)	15.3	3.6	×	×	91.22	88.81	86.43	94.0	-
• Point-MAE [†] (Pang et al., 2022)	43.6	5.3	×	×	92.60	91.91	88.42	93.8	94.0
• RECON w/o vot.	43.6	5.3	×	×	94.15	93.12	89.73	93.6	93.8
• RECON w/ vot.	43.6	5.3	×	×	94.49	93.29	90.35	93.9	94.2
with Cross-Modal Self-Supervised Representation Learning (FULL)									
• ACT (Dong et al., 2023)	22.1	4.8	\checkmark	×	93.29	91.91	88.21	93.7	94.0
• RECON-Tiny w/o vot.	11.4	2.4	\checkmark	\checkmark	93.80	92.94	89.10	93.3	93.6
• RECON-Small w/o vot.	19.0	3.2	\checkmark	\checkmark	94.15	93.12	89.52	93.5	93.8
• RECON w/o vot.	43.6	5.3	×	\checkmark	94.66	93.29	90.32	94.0	94.2
• RECON w/o vot.	43.6	5.3	\checkmark	\checkmark	95.18	93.63	90.63	94.1	94.3
• RECON w/ vot.	43.6	5.3	~	\checkmark	95.35	93.80	91.26	94.5	94.7

State-of-the-art Performance on 3D Classification Tasks

Table 3. Zero-shot 3D object classification domain transfer on ModelNet40 (MN-40) and ModelNet10 (MN-10). Top-1 accuracy (%) is reported. Ensemb. denotes whether to use the ensemble strategy with multiple text inputs.

Method	Backbone	Ensemb.	MN-10	MN-40
• PointCLIP (Zhang et al., 2022c)	ResNet-50	×	30.2	20.2
• CLIP2Point (Huang et al., 2022)	Transformer	\checkmark	66.6	49.4
• ReCon	Transformer	×	74.2	60.6
• RECON	Transformer	\checkmark	75.6	61.7

Table 10. Linear SVM classification on ModelNet40. Overall accuracy (%) without voting is reported.

Method	Hierachical	ModelNet40
• Point-BERT (Yu et al., 2022b)	×	87.4
• OcCo (Wang et al., 2021)	\checkmark	89.2
• CrossPoint (Afham et al., 2022)	\checkmark	91.2
• PointM2AE (Zhang et al., 2022b)	\checkmark	92.9
• ReCon	×	93.4

Table 2. Few-shot classification results on ModelNet40. [†] represent results of our proposed • RECON-block built backbone architecture. Overall accuracy (%) without voting is reported.

Mathod	5-v	vay	10-way			
Method	10-shot	20-shot	10-shot	20-shot		
• DGCNN	31.6 ± 2.8	40.8 ± 4.6	19.9 ± 2.1	16.9 ± 1.5		
 OcCo 	90.6 ± 2.8	92.5 ± 1.9	82.9 ± 1.3	86.5 ± 2.2		
with Self-Supervised Representation Learning (FULL)						
 Transformer 	87.8 ± 5.2	93.3 ± 4.3	84.6 ± 5.5	89.4 ± 6.3		
 Transformer[†] 	90.2 ± 5.9	94.3 ± 4.4	85.2 ± 5.9	89.9 ± 6.1		
 OcCo 	94.0 ± 3.6	95.9 ± 2.3	89.4 ± 5.1	92.4 ± 4.6		
 Point-BERT 	94.6 ± 3.1	96.3 ± 2.7	91.0 ± 5.4	92.7 ± 5.1		
 MaskPoint 	95.0 ± 3.7	97.2 ± 1.7	91.4 ± 4.0	93.4 ± 3.5		
 Point-MAE 	96.3 ± 2.5	97.8 ± 1.8	92.6 ± 4.1	95.0 ± 3.0		
 Point-M2AE 	96.8 ± 1.8	98.3 ± 1.4	92.3 ± 4.5	95.0 ± 3.0		
 Point-MAE[†] 	96.4 ± 2.8	97.8 ± 2.0	92.5 ± 4.4	95.2 ± 3.9		
 ACT 	96.8 ± 2.3	98.0 ± 1.4	93.3 ± 4.0	95.6 ± 2.8		
• RECON	$\textbf{97.3} \pm \textbf{1.9}$	$\textbf{98.9} \pm \textbf{1.2}$	$\textbf{93.3}\pm\textbf{3.9}$	$\textbf{95.8} \pm \textbf{3.0}$		
with Self-Supervised Representation Learning (MLP-LINEAR)						
 Point-MAE[†] 	91.1 ± 5.6	91.7 ± 4.0	83.5 ± 6.1	89.7 ± 4.1		
 ACT 	91.8 ± 4.7	93.1 ± 4.2	84.5 ± 6.4	90.7 ± 4.3		
• RECON	$\textbf{96.9} \pm \textbf{2.6}$	$\textbf{98.2} \pm \textbf{1.4}$	$\textbf{93.6} \pm \textbf{4.7}$	$\textbf{95.4} \pm \textbf{2.6}$		
with Self-Supervised Representation Learning (MLP-3)						
• Point-MAE [†]	95.0 ± 2.8	96.7 ± 2.4	90.6 ± 4.7	93.8 ± 5.0		
• ACT	95.9 ± 2.2	97.7 ± 1.8	92.4 ± 5.0	94.7 ± 3.9		
• RECON	$\textbf{97.4} \pm \textbf{2.2}$	$\textbf{98.5} \pm \textbf{1.4}$	$\textbf{93.6} \pm \textbf{4.7}$	$\textbf{95.7} \pm \textbf{2.7}$		

Additional Baselines

Table 9. Study of the additional baseline. Overall accuracy (%) without voting is reported.

Method	ScanObjectNN	ModelNet40
Vanilla Multi-task Learning	82.53	91.6
Two-Tower Network	85.05	92.1
RECON	90.63	94.1

Due to the pattern difference issue, both simple combinations fail to yield satisfactory generalization performance.

Contrast with Reconstruct Contrastive 3D Representation Learning Guided by Generative Pretraining

Zekun Qi † Runpei Dong † Guofan Fan Zheng Ge Xiangyu Zhang Kaisheng Ma Li Yi

GitHub

