Geometric Autoencoders

What You See is What You Decode

Philipp Nazari, Sebastian Damrich, Fred A. Hamprecht

@ ICML 2023

Problem Setting

- Problem: encoder need not encode faithfully
- Not visible in latent space

(a) Unfaithfull embedding of MNIST

(a) Faithfull embedding of MNIST

Pullback Metric

- Output Space carries Euclidean metric g
- Pullback:

$$D^{*}g_{p}(v,w) = g_{D(p)}(d_{p}Dv,d_{p}Dw)$$

• In Coordinates:

$$\langle \cdot, \cdot \rangle_{\mathrm{p}} \coloneqq \mathrm{D}^{*}\mathrm{g}_{\mathrm{p}} = \left(\mathrm{J}_{\mathrm{p}}\mathrm{D}\right)^{\mathrm{t}}\mathrm{J}_{\mathrm{p}}\mathrm{D} \in \mathbb{R}^{2,2}$$

Regularization

 $\mathcal{L}_{1} \approx Var_{x \sim \mathcal{U}(X)} \left[\log \left(\det \left(\left(J_{E(x)} D \right)^{t} J_{E(x)} D \right) \right) \right]$

(a) Vanilla Embedding of MNIST

(a) Geometric Embedding of MNIST

Diagnostics

- 1st color-code Jacobian Determinant
- 2nd indicatrices (Visualize pullback metric tensor field)
- Which directions are squeezed / expanded? How does decoder distort space?

Results

Results

	LOCAL			GLOBAL			
	$\mathrm{KL}_{0.1}$	кNN	Trust	STRESS	KL_{100}	Spear	$\langle RANK \rangle$
GEOM AE (OURS)	2.6	3.4	2.2	3.4	2.2	3.4	<u>2.9</u>
VANILLA AE	5.4	5.4	4.4	6.2	4.8	5.0	5.2
Τορο ΑΕ	2.8	4.8	4.2	4.8	2.2	1.8	3.4
UMAP AE	4.4	1.6	1.8	2.6	6.0	5.0	3.6
UMAP	5.2	3.4	$\overline{4.0}$	1.6	5.6	4.2	4.0
t-SNE	4.0	2.4	4.4	6.8	3.8	7.0	4.7
PCA	3.6	7.0	7.0	2.6	3.4	<u>1.6</u>	4.2

Thank You for Your Attention!