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Lead-in
—— What’s the problem?

Dog

Cat

Dog

Cat

ERM



Lead-in
—— Why is it important?
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Lead-in
—— Why is it hard?

Some explainability methods can generate feature 

maps for instances with wrong prediction, but they 

are ambiguous for people to understand.

Prediction: Cat

Spurious features are hard to find without any annotations.

Other approaches to unlearn the spurious correlations:
① Simply removing spurious features could introduce more noise or cause over-fitting.

② Upweight images without spurious features, but it is difficult when multiple spurious features exist.
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Grad-CAM
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The key intuitions behind DISC
—— What causes models to learn from spurious correlation?

Dog

Cat

[Intuition I] The spurious correlation of models is caused by the distribution 

imbalance of the spurious feature over different classes.
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The key intuitions behind DISC
—— What is the property of spurious correlation?

Dog

Cat

[Intuition II] Spurious features tend to be present in heterogeneous subsets 

of the data and their correlations with the label are also heterogeneous.
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Overview of DISC

Intuition II (Inconsistancy property)   → Discover spurious concepts (discovery step)

Intuition I (Distributional imbalance)  → Remove the spurious correlation (cure step)

Discovery step Cure step

Compute 
CAVs

Retrieve
images

Concept bank

Concept 
sensitivity

Balanced 
dataset𝒇(𝒕) 𝒇(𝒕+𝟏)



Concept bank

Shirley Wu. Stanford University 

{𝑐1: 𝓟𝑐1 , … , 𝑐𝑚: 𝓟𝑐𝑚}

𝑰𝒑

𝑰𝒏

Query operation

A Concept Activation Vector 

(CAV) is the direction in the 

hidden space representing the 

existence of a concept.



On discovering spurious concepts

Cat: green  | Dog: blue

Environment construction

𝑮𝟏
wrinkle

bed

bench
tree

others

others

𝑮𝟐

𝑮𝟏

𝑮𝟐

bed wrinklebench treeConcepts: ...

Concept Sensitivity

…

…

Concept tendency score
(in each environment)

Variance
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𝒗𝒊 ∈ 𝑹𝒎

Concept activation vector

𝒗𝒊 ⋅ 𝑴𝒋 ∈ 𝑹𝒄

𝑿 → 𝒁 ∈ 𝑹𝒎 → 𝒀 ∈ 𝑹𝒄

𝒉𝝁𝒈𝜽
(freeze)

𝑮𝒋 𝒀 𝑴𝒋 = 𝝀
𝛁𝑳 𝒀, 𝒀

𝛁𝝁
∈ 𝑹𝒎×𝒄

𝒎: hidden dim

𝒌: number of concepts

𝒄 : number of classes
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On discovering spurious concepts
—— Compute concept tendency score

𝑰𝒑

𝑰𝒏

Concept tendency score

Gradient matrix



On discovering spurious concepts

Cat: green  | Dog: blue

Environment construction

𝑮𝟏
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Concept Sensitivity

…
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(in each environment)
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“The importance of each concept for the 
classes in each environment”

“To what extent does the importance of each 
concept vary across different environments”

—— Summary



Concept-aware intervention

𝒀𝒊 = 𝒅𝒐𝒈

𝒀𝒊 = 𝒄𝒂𝒕

Training data
(𝑿, 𝒀)

Intervened data
(𝑿′, 𝒀′)

Mixup

Concept images
𝑿(𝓒,𝑷(𝒚))

𝒚 = 𝒅𝒐𝒈

𝒚 = 𝒄𝒂𝒕 Balanced

Retrieve

Concept bank

Shirley Wu. Stanford University 

…

Probability

…

…

Concept Sensitivity

bed wrinkle

Cat:

Dog:
bench tree



Discovery step Cure step

Compute 
CAVs

Retrieve
images

Concept bank

Concept 
sensitivity

Balanced 
dataset𝒇(𝒕) 𝒇(𝒕+𝟏)

Training process
—— Final state

𝒇(𝒕) 𝒇(𝒕+𝟏)𝒇(𝟎) 𝒇(𝑻)… …

Training on different subsets / Group stratification 

won’t change the concept importance!

→ Necessary condition of an “oracle” model
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Experiments
—— How effective is DISC on tasks with spurious correlations?
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Experiments
—— How effective is DISC in discovering spurious concepts?
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① The concept sensitivity faithfully reflects the 

spurious correlations in the training data.

② The interpretations are also robust when the 

ground truth spurious concepts doesn’t exist in the 

concept bank.
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Experiments
—— The training dynamics of DISC

① The concept sensitivity reflects the extent of a 

model being affected by spurious bias, which helps 

probe the current model state
② The reduction of average sensitivity indicates 

that the model weight has reached a “sweet spot”

ISIC dataset

Waterbirds dataset
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Limitations and future works

• Limitations
• Computing the CAVs requires extra computational resource

• The generative model may have its own bias

• Future Works
• Use generative models for OOD generalization

• More faithful concept bank 

• DISC for NLP tasks or more complicated image tasks

• The Future: Multimodality
• How to leverage multimodal models for a specific task?

• How to leverage multimodal models for interpretability or fairness?

• More modalities : video, tabular data, scientific data (molecules, time series, physics), …
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Thanks!

https://github.com/Wuyxin/DISC
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