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Background
General Federated Learning (FL) with central server —
* A learning paradigm allows distributed clients to collaboratively train a shared i’% / \ ﬁ
model without sharing data under the coordination of the central server. =& “> “> &=
* Challenges: privacy leakages and communication burdens. e &
l A solution l
Decentralized Federated Learning (DFL) £y “>
* It discards the central server and each client only communicates with its . e e
neighbors in a decentralized communication network. @ 3
=;. =
«® —
* But it may suffer from high inconsistency among local clients, which results in B \ e

1. severe distribution shift . .
:|~ Compared with centralized FL (CFL)

2. inferior performance (b) DFL framework
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Observation:
Compare the structure of loss landscapes for FedAvg (mesh plot) v.s. Decentralized FedAvg (surface plot)
on partitioned Fashion-MNIST and CIFAR-10 datasets with the same setting.

Sharper loss landscape means
poor generalization ability

(a) Fashion-MNIST (b) CIFAR-10

Research Question:
Can we design DFL algorithms that can mitigate the inconsistency among local models and achieve
similar performance to its centralized counterpart?



. . . International Conference
Tsinghua University 40 Ygea" On Machine Learning

Problem Setting and Challenges in DFL

Problem Setting:

The finite-sum stochastic non-convex minimization problem: S , .
where D, denotes the data distribution in the ¢-th client,

which is heterogeneous across clients; m is the number
fel]l@ f(x Z fi(x (x) = E¢np, Fi(x;€), (D of clients, and F;(x;€) is the local objective function as-

sociated with data samples £&. Equation (1) is known as

. the empirical risk minimization (ERM) with many applica-
Challenges in DFL: tions in ML. In Figure 1(b), the communication network in

e Various communication tovolovies. A sienificant the decentralized network topology among clients is mod-
POLOSIES. g eled as an undirected connected graph G = (N, V, W),

negative impact on model training (convergence rate where N = {1,2,...,m} refers to the set of clients, and

and generalization ability). V C N x N refers to the set of communication channels,

each connecting two distinct clients. Furthermore, there is

: : . . no central server in the decentralized setting and all clients
*  Multi-step local iterations. The corresponding : : o : :
only communicate with their neighbors via the communi-

theo're.tical al?alySiS may be more difficult and the cation channels V. In addition, we assume that Equation
empirical efficacy may also suffer compared to the one- (1) is well-defined and denote f* as the minimal value of :
step local iteration. f(x) > f(z*) = f* forall z € R,
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The Details of Methodology Algorithm 1 DFedSAM' and DFedSAM-MGS

Input :Total number of clients m, total number of communica-

Al Ol‘ithm Fion rpunds T, thq number of consensus steps per gradient

g iteration (), learning rate 7, and total number of the local
iterates are K.

Output : The consensus model x” after the final communication

e Local loss function is defined as: of oIl cliens. O
tk - . 1 Initialization: Randomly initialize each model x" (7).
fi(x) =Eep, max Fi(y" (i) +6:i5&), i€N (2 for t = 0to T — 1 do
16:12<p 2 for node 1 in parallel do
. . . . . . fork =0to K — 1do
* The k-th inner iteration in client i 1s performed as: 4 Sety*0(i) « x*(d), y" (i) = y"°(4)
tt1 ‘k ‘i k Sample a bz}ctch of local datz}€ &; and calculate local
J 1) = () — ne " (1 3 gradient g"* (i) = VF;(y"*; &)
Y (1) =y (i) —ng " (0), ) g"°(i) = VE(y"" +6(y""*); &) with 6(y"*) =
Stk t,k t,kY. vg "/ [lg""
g(i) = VEE" + 6(y"");¢) yERL() =yt (i) — gt (i)
£k tk /|| ptok ) end
S(yt*) = pgt*/| g, 6 2() « y" ¥ (i)
. . . . . . . Receive neighbors’ models z” (1) from neighborhood set
* Each client averages its parameters with the information of its neighbors Sk with adjacency matrix W .
(including itself): X" (6) = Yeny wiiz (1)
t+1/:\ _ t forq =0toQ — 1do
X" (i) = w2 (1). (4) . o
z 6;(1.) ' 7 X" (i) = X wiaz () (270(0) = 2'(0)
t,g+1l/:\ _ t,g+1l/,
«  MGS at the g-th step (q € {0, 1, ..., Q — 1}): SR USES SR
8 end
. . . t+1/:\ _ L t,Q /(.
Xt,Q-l-l(Z) _ Z wi,th’q(l), and Zt’q+1(7,) _ Xt’q+1(l). 9 x7TH(1) = x"%(4) i
. 10 end
EN (D) 11 end
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Theoretical Analysis

Problem Setting

min__, f(X):=

%i [0, [(0)=E,, F(x&)

Assumption
* Homogeneity parameter

B=max_._ B, withf = sup||Vf (x)-Vf(x)|.

xeR?

* Lipschitz smoothness

| V£ (x)= VL)l < LIl x—yl.
e Bounded variance
E, IVE:&) -V <of,Viell2,....m)

Vie{l,2,...,m}

Local :

1 m
Global : — Y [l V£ (x)-Vf(X)IF <o
m-

Convergence Analysis

* DFedSAM

(f()-f)+ol KB +a})
=0 JKT T
r B +o; )
K1/2T3/2 K1/2T3/2 (1 /1)

*  DFedSAM-MGS

mlnlétsT

min

ey @ = o(UELt0l KB voh),

1<t<T \/ﬁ T
r [’ +o7
K1/2T3/2 +¢(A’ ’Q) 1/2T3/12 )
A2 +1 29 +1

Where ®(4,m,0)=

=A@ (=227
1 — A and m is the spectral gap of gossip matrix and the
total numbers of clients, and Q is the number of MGS.
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Table 1. The performance (%) of all algorithms on two datasets in both IID and non-IID settings.

Performance with compared baselines Tek  Alporitn . T >
° . L L
p Train  Validation Generalization Train  Validation Generalization Train  Validation Generalization
error error error
FedAvg 99.99 82.39 17.60 99.99 84.17 15.82 99.99 84.70 15.29
FedSAM 99.75 82.49 16.26 99.89 85.04 14.85 99.98 84.98 15.00
D-PSGD 98.59 68.23 30.36 99.09 70.58 28.51 99.75 73.23 26.52
—— FedAvg —— FedSAM —— D-PSGD —— DFedAvg DFedAvgM DisPFL —— DFedSAM —— DFedSAM-MGS CIFAR-10 DFedAvg 99.75 73.55 26.20 99.93 74.67 25.26 99.95 75.55 24.40
Non-IID: Dir 0.3 Non-lID: Dir 0.6 1D DFedAvgM 99.93 79.96 19.97 99.95 81.56 17.39 99.95 82.07 17.88
085 0.5 DisPFL 99.90 72.19 27.71 99.93 74.43 25.50 99.95 76.18 23.77
o0 080 DFedSAM 99.41 82.04 17.37 99.44 84.38 15.06 99.44 85.30 14.14
> o7 Zors DFedSAM-MGS  99.53 84.26 15.27 99.65 85.14 14.51 99.69 86.47 13.22
g g gom FedAvg 99.99  48.36 51.63 99.99  53.06 46.93 99.99  54.16 45.83
; ; 065 ; 065 FedSAM 99.99 52.98 47.01 99.99 55.88 44.11 99.99 59.60 40.39
@ L QL
" "o ow D-PSGD 90.72  27.98 62.74 90.15  30.62 59.53 9219  33.64 59.55
055 055 CIFAR-100 DFedAvg 99.56 27.62 61.94 99.56 32.82 66.74 99.68 36.77 632.91
i) sol s DFedAvgM 99.56 45.11 54.45 99.60 45.50 54.10 99.78 47.98 51.80
’ ” Comr::&nicationsolgound * e ’ o Comrﬁ&nicationﬁafgound o e ’ e Comrﬁ&nicationﬁ}:ound e e DisPFL 97.20 30.15 67.05 99.48 32.44 67.04 99.69 35.98 63.71
(a) CIFAR-10 DFedSAM 99.87 48.66 51.21 99.85 52.70 47.15 99.97 53.12 46.85
DFedSAM-MGS  99.92 52.37 47.55 99.95 54.91 45.04 99.97 56.15 43.82
Non-IID: Dirichlet 0.3 06 Non-IID: Dirichlet 0.6
05
z o4 >
g g 03 — g
8 3 02 ] :
: : : e Outperform other baselines on both accuracy and
o 200 400 600 800 1000 O‘DU 200 400 600 800 1000 ) 0 200 400 600 800 1000 generallzatlon perspeCtlveS.
Communication Round Communication Round Communication Round

(b) CIFAR-100

Figure 3. Test accuracy of all baselines from both CFL and DFL with (a) CIFAR-10 and (b) CIFAR-100 in both IID and non-IID settings. . . .
’ * More robust than baselines in various degrees of

heterogeneous data.
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Experiments
* Measuring on the Flatness of Loss Landscape * Topology-aware Performance
(a) Comparison of the largest eigenvalue (b) Topology-aware performance
600 - 87.5 1
8501
S :
5001 T 8s Our algorithms can
D 400 @ 80.0 achieve better
= 0 77.5 generalization and model
© 2 »— D-PSGD , , ,
i 3004 = 750 > DFedAvg consistency with various
< RO —— DFedAvgM communication
—k— DFedSAM :
200 1
70,01 % —e— Dredsammcs | LoPOlogies.
100 Ring Grid Exp Full
Commincation Topology
0- N& S Table 2. Testing accuracy (%) in various network topologies com-
AN < N A Al G pared with decentralized algorithms on CIFAR-10.
ved DY ed o) e85 S P&A’N\ Algorithm Ring  Grid  Exp  Full
0?6 D-PSGD 68.96 74.36 74.90 75.35
. DFedAvg 69.95 80.17 83.13 83.48
The smaller the largest eigenvalue, DFedAvgM 7255 8524 8694  87.50

DFedSAM  73.191 85287 87.441 88.051
the flatter the loss landscape. DFedSAM-MGS  80.551 87.391 88.061 88.201 8
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Overview

1. Background:

Decentralized Federated Learning (DFL) discards the
central server and each client only communicates with
its neighbors in a decentralized communication network.
However, existing DFL suffers from high inconsistency
among local clients, which results in severe distribution

shift and inferior performance compared with
centralized FL (CFL). >

>

2. Our goal:

We aim to improve the model consistency of DFL via leveraging

Sharpness-Aware Minimization (SAM) optimizer and Multiple
Gossip Steps (MGS).

>

Loy West
—nNVL(wY) =«
. 4

VL (wy)

we W
% »

SAM optimizer w74 (%

b ey By

_rIVL(Wadv)

3. Our contribution:

We propose two effective DFL schemes: DFedSAM and
DFedSAM-MGS. DFedSAM reduces the inconsistency of
local models with local flat models, and DFedSAM-MGS
further improves the consistency via MGS acceleration and
features a better trade-off between communication and
generalization.

We present improved convergence rates, for DFedSAM
and DFedSAM-MGS in the non-convex settings,
respectively, which theoretically verify the effectiveness of
our approaches.

We conduct extensive experiments to demonstrate the
efficacy of DFedSAM and DFedSAM-MGS, which can
achieve competitive performance compared with both CFL
and DFL baselines.



