Men Also Do Laundry: Multi-Attribute Bias Amplification Dora Zhao¹, Jerone T. A. Andrews², and Alice Xiang¹ ¹Sony Al, New York, ²Sony Al, Tokyo #### **Our contributions** #### Contributions. - 1. Present two new metrics that measure bias amplification with respect to multiple attributes - 2. Empirically evaluate the presence of multi-attribute bias amplification on three datasets: COCO [1], imSitu [2], and CelebA [3] - 3. Present a novel evaluation of bias amplification on a non-binary group (hair color in CelebA) - 4. Benchmark existing bias mitigation techniques [4, 5, 6, 7] using single and multi-attribute bias amplification metrics ^[1] Lin et al. "Microsoft COCO: Common Objects in Context." ECCV 2014. ^[2] Yatskar et al. "Situation Recognition: Visual Semantic Role Labeling for Image Understanding." CVPR 2016. ^[3] Liu et al. "Deep Learning Face Attributes in the Wild." ICCV 2015. ^[4] Zhao et al. "Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints." EMNLP 2017. ^[5] Wang et al. "Balanced Datasets are Not Enough: Estimating and Mitigating Gender Bias in Deep image Representations." ICCV 2019. ^[6] Wang et al. "Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation." CVPR 2020. ^[7] Agarwal et al. "Does Data Repair Lead to Fair Models? Curating Contextually Fair Data to Reduce Model Bias." WACV 2022. #### **Existing methods measure single-attribute bias amplification** - **Bias amplification** occurs when a model compounds the inherent biases of its training set at test time [1] - There are two main approaches to measuring bias amplification in computer vision: - 1. Leakage-based metrics [2, 3] - 2. Co-occurrence-based metrics [1, 4] - However, most of these approaches measure bias amplification wrt single annotated attributes (e.g., fridge). However, most images in computer vision datasets contain multiple attribute annotations (e.g., {fridge, oven, cake}) ^[1] Zhao et al. "Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints." EMNLP 2017. ^[2] Wang et al. "Balanced Datasets are Not Enough: Estimating and Mitigating Gender Bias in Deep image Representations." ICCV 2019. ^[3] Hirota et al. "Quantifying Societal Bias Amplification in Image Captioning." CVPR 2022. ^[4] Wang and Russakovsky. "Directional Bias Amplification." ICML 2021. #### Multi-attribute bias amplification We propose **two** co-occurrence-based metric that takes into account multiple attributes: #### 1) Undirected Bias Amplification #### 2) Directed Bias Amplification $$\begin{aligned} \mathsf{Multi}_{\to} &= X, \mathsf{Var}(\Delta_{mg}) & \quad \mathsf{where} \\ & \quad X = \frac{1}{|\mathcal{G}||\mathcal{M}|} \sum_{g \in \mathcal{G}} \sum_{m \in \mathcal{M}} y_{gm} \left| \Delta_{gm} \right| + (1 - y_{gm}) \left| -\Delta_{gm} \right|, \\ & \quad y_{gm} = 1 [P_{\mathsf{train}}(g = 1, m = 1) > P_{\mathsf{train}}(g = 1) P_{\mathsf{train}}(m = 1)] \\ & \quad \Delta_{gm} = \begin{cases} P_{\mathsf{test}}(\hat{m} = 1 | g = 1) - P_{\mathsf{train}}(m = 1 | g = 1) \text{ if measuring } G \to M \\ P_{\mathsf{test}}(\hat{g} = 1 | m = 1) - P_{\mathsf{train}}(g = 1 | m = 1) \text{ if measuring } M \to G \end{cases} \end{aligned}$$ #### **Advantages** - (1) Our metric accounts for co-occurrences with multiple attributes - 2 Negative and positive values do not cancel each other out - 3 Our metric is more interpretable ### **Evaluating bias amplification on existing computer vision datasets** We benchmark our metric and existing single-attribute bias amplification metrics [1, 2] using three datasets: | Dataset | Group | Attribute | |------------|---|------------------------| | COCO [3] | Perceived gender expression {female, male} | 52 objects | | imSitu [4] | Perceived gender expression {female, male} | Action, location | | CelebA [5] | Hair color
{blonde hair, black hair, brown hair} | 23 physical attributes | ^[1] Zhao et al. "Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints." EMNLP 2017. ^[2] Wang and Russakovsky. "Directional Bias Amplification." ICML 2021. ^[3] Lin et al. "Microsoft COCO: Common Objects in Context." ECCV 2014. ^[4] Yatskar et al. "Situation Recognition: Visual Semantic Role Labeling for Image Understanding." CVPR 2016. ^[5] Liu et al. "Deep Learning Face Attributes in the Wild." ICCV 2015. ## Bias amplification from multiple attributes is greater than from single attributes To analyze the effect of considering multiple attributes, we perform evaluation on datasets that are balanced w.r.t. single attributes. | _ | | | |--|--|--| | (a) COCO | $ m_i \ge 2$ | $ m_i \ge 1$ | | $Multi_{MALS}$ $Multi_{M o G}$ $Multi_{G o M}$ | 22.3 ± 0.7 , $[4.6 \pm 0.1]$
22.7 ± 0.3 , $[12.9 \pm 0.2]$
0.3 ± 0.0 , $[0.0 \pm 0.0]$ | 21.9 ± 0.2 , $[4.5 \pm 0.1]$
22.2 ± 0.3 , $[13.0 \pm 0.0]$
0.3 ± 0.0 , $[0.0 \pm 0.0]$ | | (b) imSitu | $ m_i \ge 2$ | $ m_i \ge 1$ | | $Multi_{MALS}$ $Multi_{M o G}$ $Multi_{G o M}$ | 18.0 ± 0.3 , $[3.0 \pm 0.1]$
14.5 ± 0.2 , $[4.1 \pm 0.2]$
0.1 ± 0.0 , $[0.0 \pm 0.0]$ | 9.4 ± 0.2 , $[1.6 \pm 0.1]$
13.0 ± 0.1 , $[3.2 \pm 0.1]$
0.1 ± 0.0 , $[0.0 \pm 0.0]$ | | (c) CelebA | $ m_i \ge 2$ | $ m_i \ge 1$ | | $Multi_{MALS}$ $Multi_{M o G}$ $Multi_{G o M}$ | 23.2 ± 0.4 , $[2.3 \pm 0.1]$
5.5 ± 0.0 , $[0.0 \pm 0.0]$
0.6 ± 0.0 , $[0.1 \pm 0.0]$ | 23.1 ± 0.4 , $[2.3 \pm 0.1]$
5.5 ± 0.0 , $[0.0 \pm .0.0]$
0.6 ± 0.0 , $[0.1 \pm 0.0]$ | - We show multi-attribute bias amplification (mean and variance) when varying |m_i|, the minimum number of attributes in a combination. - Multi_{MALS} increases for $|m_i| \ge 2$ compared to $|m_i| \ge 1$ ## Single-attribute bias amplification methods can increase multi-attribute amplification We benchmark five bias mitigation methods [1, 2, 3, 4] trained and evaluated using the unbalanced dataset. | (a) COCO | mAP | BiasAmp _{MALS} | Multi _{MALS} | $BiasAmp_{M \to G}$ | $Multi_{M o G}$ | $BiasAmp_{G o M}$ | $Multi_{G o M}$ | |--------------|----------------|----------------------------|----------------------------------|----------------------------|-------------------|-------------------------|----------------------------| | Original | 53.4 ± 0.2 | -0.6 ± 0.3 | 14.5 ± 0.6 | 2.2 ± 0.4 | 12.5 ± 0.2 | -0.0 ± 0.0 | 0.4 ± 0.0 | | Oversampling | 51.5 ± 0.1 | 1.1 ± 0.1 | 14.0 ± 0.4 | -3.4 ± 0.2 | 12.5 ± 0.3 | -0.2 ± 0.0 | $\boldsymbol{0.3 \pm 0.0}$ | | RBA | 50.7 ± 1.1 | 3.8 ± 1.7 | 14.9 ± 1.1 | -6.3 ± 3.5 | 17.3 ± 2.2 | 0.1 ± 01 | 0.4 ± 0.0 | | Adv | 59.0 ± 0.1 | -0.7 ± 0.9 | 17.1 ± 0.4 | 7.0 ± 0.6 | 14.7 ± 0.6 | 0.1 ± 0.0 | 0.3 ± 0.0 | | DomInd | 56.1 ± 0.3 | 0.4 ± 0.6 | 12.6 ± 0.8 | $\boldsymbol{0.0 \pm 0.0}$ | 0.0 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | | Data Repair | 48.5 ± 0.1 | $\boldsymbol{0.3 \pm 0.1}$ | 17.2 ± 0.3 | 1.9 ± 0.3 | 11.7 ± 0.2 | -0.0 ± 0.0 | 0.4 ± 0.0 | | (b) imSitu | mAP | ${\bf BiasAmp_{MALS}}$ | $Multi_{MALS}$ | $BiasAmp_{M \to G}$ | $Multi_{M \to G}$ | $BiasAmp_{G \to M}$ | $Multi_{G o M}$ | | Original | 67.1 ± 0.1 | 2.5 ± 0.1 | 37.5 ± 0.1 | -0.3 ± 0.1 | 20.6 ± 0.1 | 0.0 ± 0.0 | 0.2 ± 0.0 | | Oversampling | 66.3 ± 0.1 | -4.5 ± 0.2 | 35.8 ± 0.1 | -2.4 ± 0.1 | 20.1 ± 0.1 | -0.0 ± 0.0 | 0.2 ± 0.0 | | RBA | 54.7 ± 0.5 | -1.4 ± 0.3 | 35.4 ± 0.3 | -6.2 ± 0.3 | 40.7 ± 0.5 | -0.1 ± 0.0 | 0.3 ± 0.0 | | Adv | 58.1 ± 0.1 | 4.1 ± 0.3 | 38.7 ± 0.3 | 0.6 ± 0.4 | 28.1 ± 0.3 | -0.0 ± 0.0 | 0.2 ± 0.0 | | DomInd | 69.6 ± 0.1 | 10.2 ± 0.9 | 37.5 ± 0.4 | $\boldsymbol{0.0 \pm 0.0}$ | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | | Data Repair | 62.3 ± 0.1 | -1.8 ± 0.1 | $\textbf{16.2} \pm \textbf{0.1}$ | -0.1 ± 0.1 | 24.2 ± 0.1 | $\mathbf{-0.0} \pm 0.0$ | $\boldsymbol{0.1 \pm 0.0}$ | ^[1] Zhao et al. "Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints." EMNLP 2017. ^[2] Wang et al. "Balanced Datasets are Not Enough: Estimating and Mitigating Gender Bias in Deep image Representations." ICCV 2019. ^[3] Wang et al. "Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation." CVPR 2020. ^[4] Agarwal et al. "Does Data Repair Lead to Fair Models? Curating Contextually Fair Data to Reduce Model Bias." WACV 2022. #### **Key takeaways** - (1) Models can leverage correlations between groups and multiple attributes simultaneously - (2) On average, bias amplification from multiple attributes is greater than that from single attributes - (3) Single attribute bias mitigation methods can inadvertently increase multi-bias amplification # SONY