Learning to Boost Training

by Periodic Nowcasting Near Future Weights

Jinhyeok Jang, Woo-han Yun, Won Hwa Kim,
Youngwoo Yoon, Jaehong Kim, Jaeyeon Lee,

ByungOk Han



Weight Prediction

« Can we bypass the training process and directly arrive at future weights?

X : Weight of each Epoch
? : Expected Future Weight

.« : General Update ’:“'\ LI ' ' " 1 =zat ! X - '
T Line Style N} Line Style
H o7sF il K 1 .l L
: Nowcast ) {I. ceeNaive 22| : crsenens Naive
I .";'I,. = = Curve Fitting(Linear)[]  2r =|| = = Curve Fitting(Linear)
us —— WNN 1 5 ——WNN
2 D 'k Color 1§16 ' Color
Eos ——Batch Size=256() 5 1.4} k —LR=1e5
g ——Batch Size=512) | & | £ ‘o, ——LR=1e4| |
5 0 18 7 ] LR=1e-3
0.4 ! .j'-. s
DB b \4-':5_ - ==
- 06 e ruaty, e
naf 1
o 10 a0 4 0 10 an 4 50

Description of Optimization as Contour General Tendency of Loss graph



Our Strategy

1) Learning-based regression model

2) Element-wise independent forecasting.

3) Separate forecasting for each mathematical operation,

4) Periodic short-term nowcasting per every 5 epochs,

5) Predicting residual between the future and the current weights

6) Applying a forecast network trained on Image Classification Task to various tasks

Update Update  Update Update

26 4 T _6_® Nowcast e 00

@t_g Gt—8 ®t—7 Gt—6 @t—s E E G)t

Pretrained WNN

Figure 4. Conceptual view of short-term prediction with the proposed WNN.



Weight Nowcaster Network (WNN)

 For weight forecast, two things were considered:
1) Accurate Regression
2) Fast Process: ~5,000 parameters size of WNN

Weight Par;;ﬁéters L v
(WI) — —_—
< ) 1-a + a =n
m Output Last Future
—_ —>“

.‘i‘i‘-\ D > Parameter Parameter

Temporal Difference L
(dwy)

Faw WNN

Figure 5. Weight Nowcaster Network Architecture. The WNN is composed of simple two-stream networks that use fully-connected
layers and an activation network. Feature vectors from those two networks are unified to a feature vector and it is passed through a
fully-connected layer. The predicted future weight parameters are obtained by adding outputs and input weight parameters.



Data Collection

* Architecture: LeNet, VGG, ResNet, MobileNetV2, ShuffleNetV2,
DenseNet

» Dataset: MNIST, CIFAR1T0
* Optimizer: Adam

* Training Data: Weights of 30,000 epochs (~1.8e+10 parameters)

» Validation: 2,200 epochs of ShuffleNetV2 and ResNet32



Experiments |

 Application to Vanilla CNN + CIFAR10

« Comparisons with
1) Various Curve Fitting Models
2) Various Acceleration Methods

oo oo . Table 4. Time cost comparisons to train a Vanilla CNN by using
various recent methods on the CIFAR10 dataset. NVIDIA TITAN
> ;5 S > Xp GPU was used to estimate time cost. “Converge” is the time to
g = —— Curve Fitting(Linear) ® ) '
g 0.45 gurve Ettfng(Exfonential) g S ~——— HyperNetworks I'eaCh a. Valldatlon aCCllI'acy Of 59%
04 Cure F;tt;ng:xsmr)noid) _ _tgg_Ama,gam Method Update  meta-learning forecasting Converge Speed Up
2 Curve Fitting(2nd Polynomial) 05! N
Curve Fitting(Power) jnirospection, (sec/batch) (hour) (sec) (sec)
0.35 Curve Fitting(Michaelis Menten) Curve Fitting(Linear)
- L : 045 =i Naive Training | 0.0245 - - 52.82 x1.00
0 e 0 e HyperNetworks | 0.0267 - - 51.02 x1.04
(a) (b) L20 0.0290 20 (per task) - 4405  x1.20
L20-Amalgam | 0.0291 6.35 (only once) - 67.02 x0.79
Figure 5. Comparisons of validation accuracy (a) of the proposed Introspection | 0.0245 0.03 (only once)  0.015 4323  x1.22
and curve fitting models, (b) of the proposed with previous methods c CF (Linear) | 88;12 - 0;33125 Z?;Alf x1.33
. F (Exponential) . - . . x0.85
HyperNetworks, .20, L.20-Amalgam, and Introspection). The
(Hyp & P ) WNN 0.0245 0.08 (only once) 0.015 25.27 x2.09

shading represents the variation in validation accuracy of five trials.



Experiments Il

 Application to Vanilla CNN and CIFAR10
« Comparisons with Linear Curve Fitting Mode

Naive
» Curve Fitting(Linear)
* \WNN

e —&— Input Weight Values X
- & -Real Future Weight Values b 4
* Curve Fitting(Linear)
Curve Fitting(Exponential) *
S S ¥ Curve Fitting(2nd Polynomial) g
o \ o * WNN o (o N
> \ = o > °
E L = -0 = .
S - ) o X &
@ | —®—Input Weight Values h - @ - @ | —®—Input Weight Values
= | - e -Real Future Weight Values - e x = - = | - & -Real Future Weight Values
*  Curve Fitting(Linear) *  Curve Fitting(Linear) o
Curve Fitting(Exponential) Curve Fitting(Exponential) Y -
% Curve Fitting(2nd Polynomial) X % Curve Fitting(2nd Polynomial) @
* WNN # WNN
0 2 4 [ 8 10 0 2 4 [ 8 10 0 2 4 [ 8 10
Epoch Epoch Epoch
x —e— Input Weight Values
= © - Real Future Weight Values )(
*  Curve Fitting(Linear)
Curve Fitting( Exponential)
@ @ 4] X Curve Fitting(2nd Polynomial)
3 - b4 3 =
= Rl Al ~a G| > wnN %
> a = N =
- N - [
5 & el K B ~a. x
@ [ —e—Input Weight Values \Q‘ @ | —e—Input Weight Values L. ° @« ~a,
S|-e =Real Future Weight Values A El-e =Real Future Weight Values = ~
¥ Curve Fitting(Linear) ‘Q x X Curve Fitting(Linear) '\
Curve Fitting(Exponential) N Curve Fitting(Exponential) \\
% Curve Fitting(2nd Polynomial) \ % Curve Fitting(2nd Polynomial) N
% WNN ° % WNN x ®
2 4 [ 8 10 2 4 [ 8 10 2 4 [ 8 10
Epoch Epoch Epoch




Experiments Il

@

(ii)

(iii)

(iv)

(v

—

(vi)

(vii)

* Further Tasks

ImageNet Classification. ImageNet (Deng et al.,
2009) is a widely-used large-scale dataset with 1.3
million images from 1,000 classes. We trained the Mo-
bileNetV?2 using the Adam with exponential decay.

Image Segmentation. DeepLabV3+ (Chen et al.,
2018) with the MobileNetV2 backbone was trained
on the PASCAL VOC 2012 dataset (Everingham et al.,

2015) with the SGD, cosine decay, and cross entropy.
Pose Estimation. We adopted OpenPose (Cao et al.,
2017) with an ImageNet-pre-trained VGG19 backbone
on the MS COCO 2016 (Lin et al., 2014) that consists
of over 100K persons’ keypoints.

Language Modeling, The goal is to predict a masked
word from a sequence of words, i.e., text. The univer-
sal BERT (Dehghani et al., 2019) on the WikiText-2
dataset which consists of over 2 million words was
trained with the Adam, the masked LM loss, and the
penalized confidence (Pereyra et al., 2017).
Reinforcement Learning. We applied WNN to the
Pendulum problem, which is a famous reinforcement
learning problem using the DDPG (Deep Deterministic
Policy Gradient) (Lillicrap et al., 2015). Two networks,
an actor and a critic, were trained using the Adam for
200 episodes.

Transfer Learning on Attention Model. PVTv2-B0
(Wang et al., 2022) with ImageNet-pre-trained weights
was trained on CIFAR100 for 50 epochs using the
Adam, the warm-up scheduling, and decay.

Diffusion Model. We validated on the Denoising Dif-
fusion Implicit Model (DDIM) (Song et al., 2020) on
the Oxford Flowers dataset (Nilsback & Zisserman,
2008). The model was trained to minimize /1 loss us-
ing the AdamW with the learning rate decay from le-3
for 60 epochs. We evaluated it based on KID (Kernel
Inception Distance) metric (Biftkowski et al., 2018).

Table 5. Experimental comparisons on various tasks with naive training, Introspection, a linear curve fitting, and the proposed WNN.
WNN consistently outperforms the other methods on a variety of tasks.

Task Method Best Converge Reach Speed Task Method Best Converge Reach  Speed
(Metric) (epoch/episode) Up (Metric) (epoch/episode) Up

ImageNet Classification Naive 69.40% 26 68.00% x 1.00 RL Naive -139.10 116 -200.00 x 1.00

(Val Acct) Introspection 70.13% 24 68.00% x 1.08 || (Episode Reward?) | Introspection -128.70 107 -200.00 x 1.08

CF (Linear) 68.19% 41 68.00% x 0.63 CF (Linear) -138.79 111 -200.00 x 1.05

WNN 70.57% 21 68.00% x 1.24 WNN -123.55 88 -200.00 x 1.32

Image Segmentation Naive 53.99% 55 48.00% x 1.00 || Transfer Learning Naive 83.22% 17 80.00% x 1.00

(Val Jaccard?) Introspection 53.97% 46 48.00% x 1.20 || on Attention Model | Introspection 81.52% 38 80.00% x 0.45

CF (Linear) 53.79% 50 48.00% = 1.10 (Val Acct) CF (Linear) 82.51% 14 80.00% x 1.21

WNN 53.81% 45 48.00% = 1.20 WNN 83.09% 14 80.00% x 1.21

Pose Estimation Naive 623.54 43 673.00 x 1.00| Diffusion Model Naive 0.1918 32 0.2000 x 1.00

(Val Loss]) Introspection 627.17 46 673.00 x0.94 (Val KIDJ) Introspection 0.1786 36 0.2000 x 0.89

CF (Linear) 614.80 30 673.00 x 1.43 CF (Linear) 0.1878 54 0.2000 x 0.59

WNN 615.79 30 673.00 x 1.43 WNN 0.1732 26 0.2000 x 1.23

Language Modeling Naive 31.25 55 100.00 x 1.00 Average Naive N/A N/A N/A  x 1.00

(Val Perplexityl) Introspection  39.93 56 100.00 x 0.98 Introspection  N/A N/A N/A x 094

CF (Linear)  42.67 58 100.00 = 0.95 CF (Linear) N/A N/A N/A  x0.99

WNN 31.26 48 100.00 x 1.15 WNN N/A N/A N/A  x1.25




Code Availability

e https://github.com/jjh6297/WNN

¢Weight Nowcasting Network (WNN)

Code for ["Learning to Boost Training by Periodic Nowcasting Near Future Weights"]

dependency

| Library | Known Working | Known Not Working |
| tensorflow | 2.3.0, 2.9.0 | <= 2.0 |

Usage

WNN can be easily used as a callback function extending tf.keras.callbacks.Callback:

import tensorflow as tf
import tensorflow.keras
from WNN import *

model.fit(..., callbacks=[WeightForecasting()])

Pre-trained Weights

Pre-trained weights of WNN are included. 'NWNN_XXX_13.h5 " in this repo are the pre-trained weights for each
mathematical operation type (Conv, FC, Bias).


https://github.com/jjh6297/WNN




