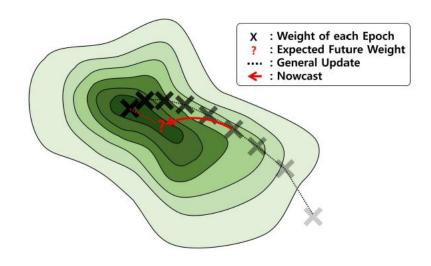
Learning to Boost Training by Periodic Nowcasting Near Future Weights

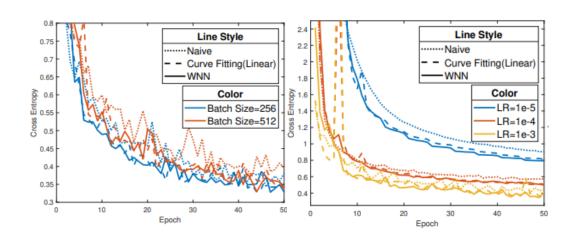
Jinhyeok Jang, Woo-han Yun, Won Hwa Kim, Youngwoo Yoon, Jaehong Kim, Jaeyeon Lee, ByungOk Han

Weight Prediction

• Can we bypass the training process and directly arrive at future weights?



Description of Optimization as Contour



General Tendency of Loss graph

Our Strategy

- 1) Learning-based regression model
- 2) Element-wise independent forecasting.
- 3) Separate forecasting for each mathematical operation,
- 4) Periodic short-term nowcasting per every 5 epochs,
- 5) Predicting residual between the future and the current weights
- 6) Applying a forecast network trained on Image Classification Task to various tasks

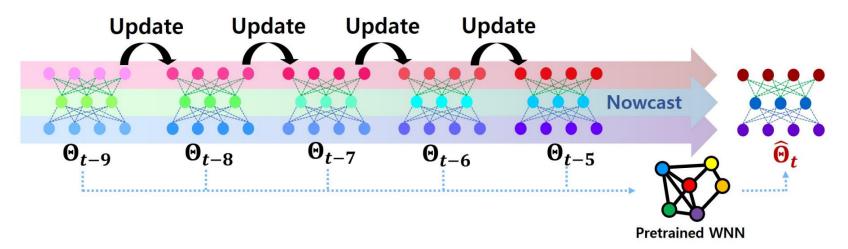


Figure 4. Conceptual view of short-term prediction with the proposed WNN.

Weight Nowcaster Network (WNN)

- For weight forecast, two things were considered:
 - 1) Accurate Regression
 - 2) Fast Process: ~5,000 parameters size of WNN

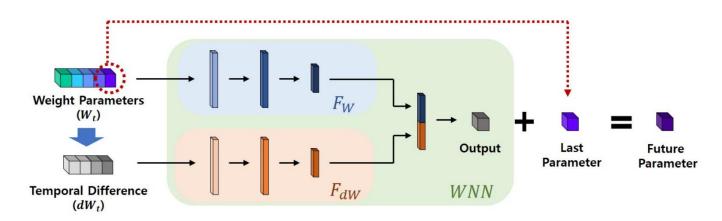


Figure 5. Weight Nowcaster Network Architecture. The WNN is composed of simple two-stream networks that use fully-connected layers and an activation network. Feature vectors from those two networks are unified to a feature vector and it is passed through a fully-connected layer. The predicted future weight parameters are obtained by adding outputs and input weight parameters.

Data Collection

- Architecture: LeNet, VGG, ResNet, MobileNetV2, ShuffleNetV2, DenseNet
- Dataset: MNIST, CIFAR10
- Optimizer: Adam
- Training Data: Weights of 30,000 epochs (~1.8e+10 parameters)
- Validation: 2,200 epochs of ShuffleNetV2 and ResNet32

Experiments I

- Application to Vanilla CNN + CIFAR10
- Comparisons with
 - 1) Various Curve Fitting Models
 - 2) Various Acceleration Methods

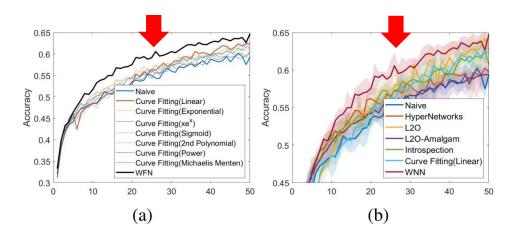


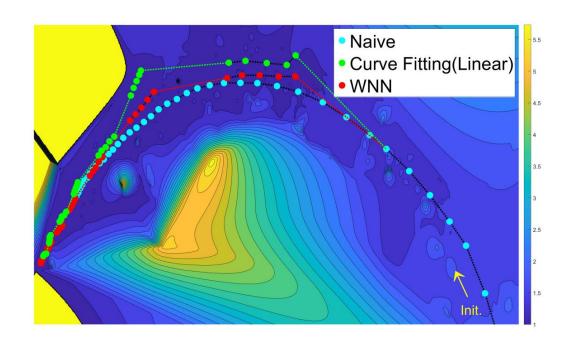
Figure 5. Comparisons of validation accuracy (a) of the proposed and curve fitting models, (b) of the proposed with previous methods (HyperNetworks, L2O, L2O-Amalgam, and Introspection). The shading represents the variation in validation accuracy of five trials.

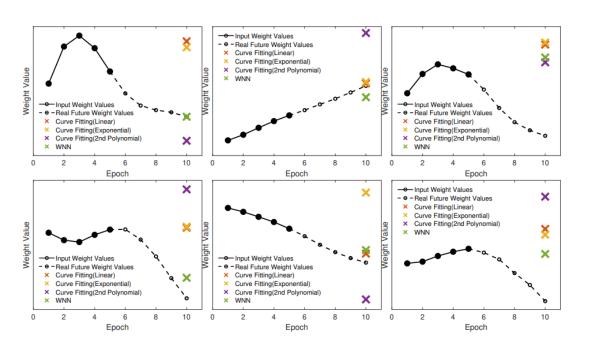
Table 4. Time cost comparisons to train a Vanilla CNN by using various recent methods on the CIFAR10 dataset. NVIDIA TITAN Xp GPU was used to estimate time cost. "Converge" is the time to reach a validation accuracy of 59%

Method	Update	meta-learning	forecasting	Converge	Speed Up
	(sec/batch)	(hour)	(sec)	(sec)	
Naive Training	0.0245	-	-	52.82	×1.00
HyperNetworks	0.0267	-	-	51.02	$\times 1.04$
L2O	0.0290	20 (per task)	-	44.05	$\times 1.20$
L2O-Amalgam	0.0291	6.35 (only once)	-	67.02	$\times 0.79$
Introspection	0.0245	0.03 (only once)	0.015	43.23	$\times 1.22$
CF (Linear)	0.0245	-	0.015	39.71	$\times 1.33$
CF (Exponential)	0.0245	-	3.32	61.94	$\times 0.85$
WNN	0.0245	0.08 (only once)	0.015	25.27	$\times 2.09$

Experiments II

- Application to Vanilla CNN and CIFAR10
- Comparisons with Linear Curve Fitting Model





Experiments III

Further Tasks

- (i) ImageNet Classification. ImageNet (Deng et al., 2009) is a widely-used large-scale dataset with 1.3 million images from 1,000 classes. We trained the MobileNetV2 using the Adam with exponential decay.
- (ii) Image Segmentation. DeepLabV3+ (Chen et al., 2018) with the MobileNetV2 backbone was trained on the PASCAL VOC 2012 dataset (Everingham et al., 2015) with the SGD, cosine decay, and cross entropy.
- (iii) Pose Estimation. We adopted OpenPose (Cao et al., 2017) with an ImageNet-pre-trained VGG19 backbone on the MS COCO 2016 (Lin et al., 2014) that consists of over 100K persons' keypoints.
- (iv) Language Modeling. The goal is to predict a masked word from a sequence of words, i.e., text. The universal BERT (Dehghani et al., 2019) on the WikiText-2 dataset which consists of over 2 million words was trained with the Adam, the masked LM loss, and the penalized confidence (Pereyra et al., 2017).
- (v) Reinforcement Learning. We applied WNN to the Pendulum problem, which is a famous reinforcement learning problem using the DDPG (Deep Deterministic Policy Gradient) (Lillicrap et al., 2015). Two networks, an actor and a critic, were trained using the Adam for 200 episodes.
- (vi) Transfer Learning on Attention Model. PVTv2-B0 (Wang et al., 2022) with ImageNet-pre-trained weights was trained on CIFAR100 for 50 epochs using the Adam, the warm-up scheduling, and decay.
- (vii) Diffusion Model. We validated on the Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020) on the Oxford Flowers dataset (Nilsback & Zisserman, 2008). The model was trained to minimize ℓ1 loss using the AdamW with the learning rate decay from 1e-3 for 60 epochs. We evaluated it based on KID (Kernel Inception Distance) metric (Bińkowski et al., 2018).

Table 5. Experimental comparisons on various tasks with naive training, Introspection, a linear curve fitting, and the proposed WNN. WNN consistently outperforms the other methods on a variety of tasks.

Task	Method	Best	Converge	Reach	Speed	Task	Method	Best	Converge	Reach	Speed
(Metric)			(epoch/episode)		Up	(Metric)			(epoch/episode)		Up
ImageNet Classification	Naive	69.40%	26	68.00%	× 1.00	RL	Naive	-139.10	116	-200.00	× 1.00
(Val Acc↑)	Introspection	70.13%	24	68.00%	× 1.08	(Episode Reward↑)	Introspection	-128.70	107	-200.00	\times 1.08
	CF (Linear)	68.19%	41	68.00%	$\times 0.63$		CF (Linear)	-138.79	111	-200.00	\times 1.05
	WNN	70.57%	21	68.00%	× 1.24		WNN	-123.55	88	-200.00	\times 1.32
Image Segmentation	Naive	53.99%	55	48.00%	× 1.00	Transfer Learning	Naive	83.22%	17	80.00%	× 1.00
(Val Jaccard↑)	Introspection	53.97%	46	48.00%	× 1.20	on Attention Model	Introspection	81.52%	38	80.00%	\times 0.45
	CF (Linear)	53.79%	50	48.00%	× 1.10	(Val Acc↑)	CF (Linear)	82.51%	14	80.00%	× 1.21
	WNN	53.81%	45	48.00%	× 1.20		WNN	83.09%	14	80.00%	× 1.21
Pose Estimation	Naive	623.54	43	673.00	× 1.00	Diffusion Model	Naive	0.1918	32	0.2000	× 1.00
(Val Loss↓)	Introspection	627.17	46	673.00	× 0.94	(Val KID↓)	Introspection	0.1786	36	0.2000	$\times 0.89$
	CF (Linear)	614.80	30	673.00	× 1.43		CF (Linear)	0.1878	54	0.2000	$\times 0.59$
	WNN	615.79	30	673.00	× 1.43		WNN	0.1732	26	0.2000	\times 1.23
Language Modeling	Naive	31.25	55	100.00	× 1.00	Average	Naive	N/A	N/A	N/A	× 1.00
(Val Perplexity↓)	Introspection	39.93	56	100.00	$\times 0.98$		Introspection	N/A	N/A	N/A	\times 0.94
	CF (Linear)	42.67	58	100.00	× 0.95		CF (Linear)	N/A	N/A	N/A	$\times 0.99$
	WNN	31.26	48	100.00	× 1.15		WNN	N/A	N/A	N/A	× 1.25

Code Availability

https://github.com/jjh6297/WNN

Code for ["Learning to Boost Training by Periodic Nowcasting Near Future Weights"]

dependency

| Library | Known Working | Known Not Working | | tensorflow | 2.3.0, 2.9.0 | <= 2.0 |

Usage

WNN can be easily used as a callback function extending tf.keras.callbacks.Callback:

```
import tensorflow as tf
import tensorflow.keras
from WNN import *
.
.
.
.
.
model.fit(..., callbacks=[WeightForecasting()])
```

Pre-trained Weights

Pre-trained weights of WNN are included. 'NWNN_XXX_13.h5' in this repo are the pre-trained weights for each mathematical operation type (Conv, FC, Bias).

Thanks