Towards Unbiased Training in Federated Open-world Semi-supervised Learning

Jie Zhang¹, Xiaosong Ma¹, Song Guo¹, and Wenchao Xu¹

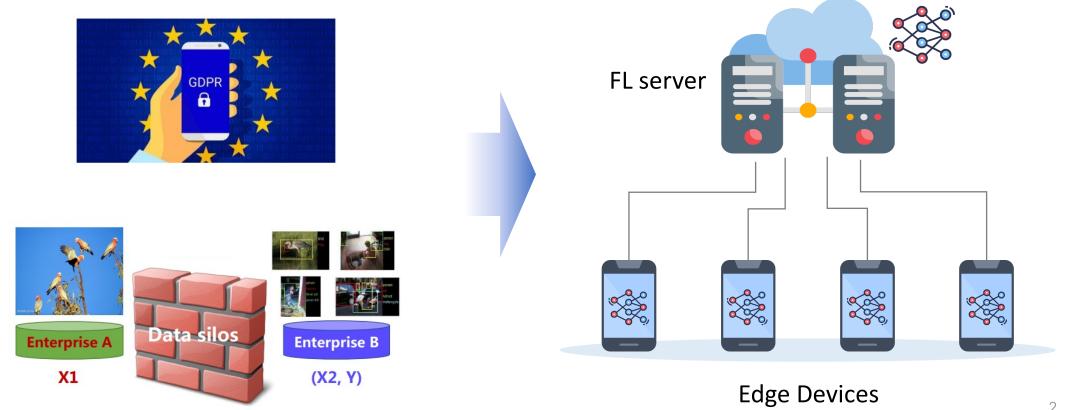
¹Department of Computing, The Hong Kong Polytechnic University (PolyU)

Department of Computing

電子計算學系

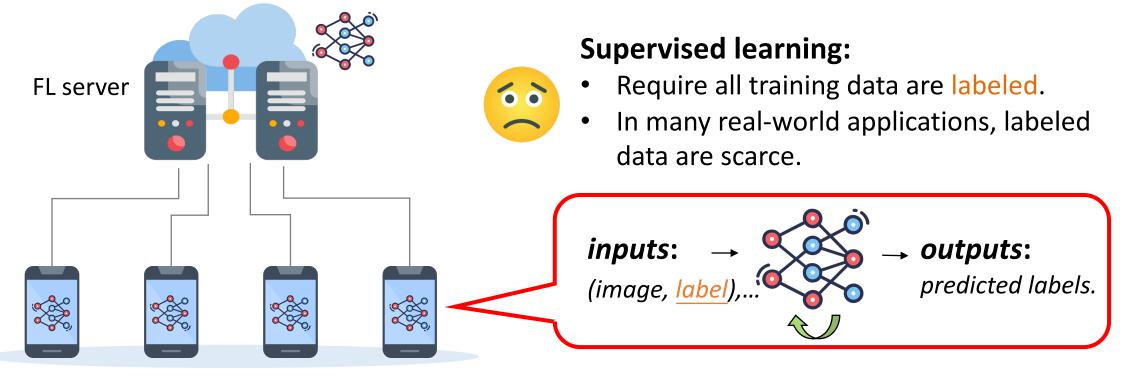
Federated Learning (FL)

- Increasing strict laws on data protection • e.g., GDPR of EU, 2018; CCPA of USA, 2018; Cyber Security Law of China, 2017
- Federated Learning (FL) aims to collaboratively train a ML model while keeping ulletthe data decentralized



Federated Supervised Learning

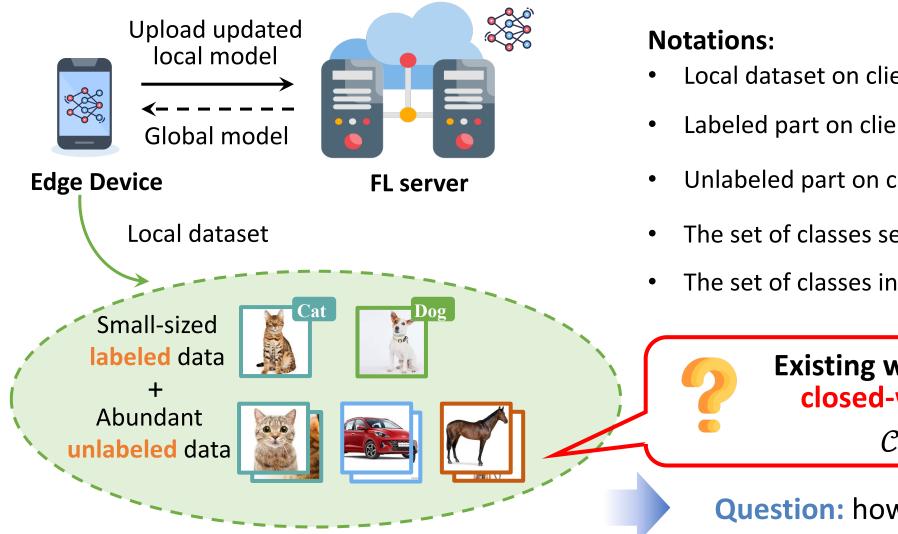
- Local training: each model trains the newest global model on local labeled dataset, then, uploading local updates to server
- **Global aggregation**: the server aggregates the updated local models to obtain new global model



Edge Devices

Local Training

Federated Semi-Supervised Learning (FedSSL) [1] [2]



- Local dataset on client $i: \mathcal{D}_i = \mathcal{D}_i^l \cup \mathcal{D}_i^u$
- Labeled part on client $i: \mathcal{D}_i^l = \{(x_j, y_j)\}_{j=1}^{n_i^l}$
- Unlabeled part on client $i: \mathcal{D}_i^u = \{(x_j)\}_{i=1}^{n_i^u}$
- The set of classes seen in full labeled data: C^{l}
- The set of classes in full unlabeled data: \mathcal{C}^{u}

Existing works consider a closed-world setting: $C^l = C^u$

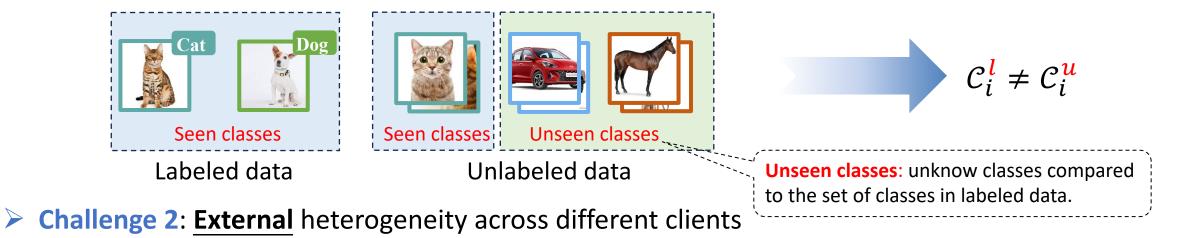
Question: how about $C^l \neq C^u$?

[1] Lin et al. SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training, NeurIPS 2022. [2] Jeong et al. Federated semi-supervised learning with inter-client consistency & disjoint learning. ICLR 2021.

Federated Open-world Semi-Supervised Learning (FedoSSL)

• Enabling efficient FedoSSL is challenging:

> Challenge 1: Internal heterogeneity in each client

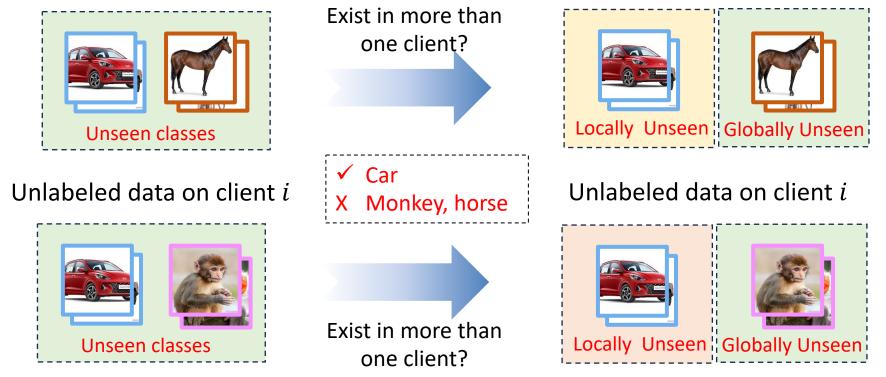


Goal: Design efficient FedoSSL framework to overcome above two challenges.

 $C^l \neq C^u$

Inspiration

• The unseen class can be further divided into two types according to the distribution heterogeneity.



Unlabeled data on client j

Unlabeled data on client j

Next Step: how to eliminate biased training among different types of unseen classes?

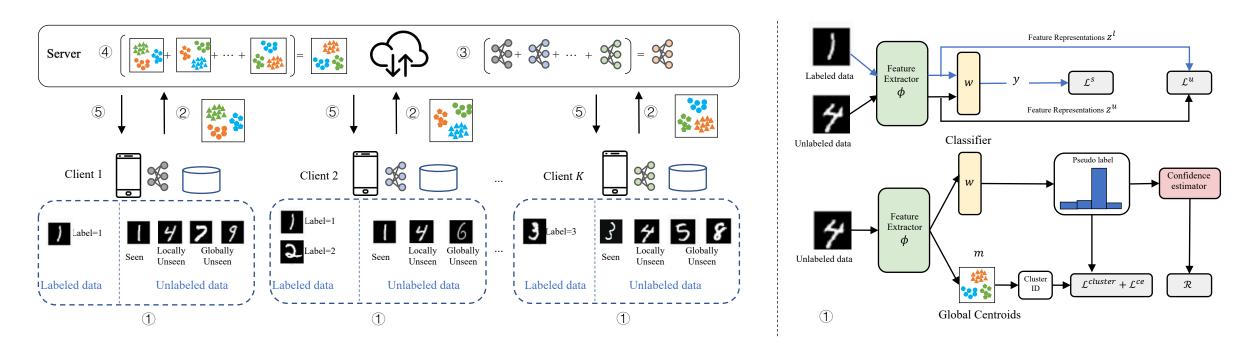
Methodology: FedoSSL

Definition 1 (Locally unseen & globally unseen class): In FedoSSL, the unseen classes $C_{i, unseen}$ on client *i* can be divided into two types: locally unseen classes $C_{i, lu}$, in which $C_{i, lu} = C_{1, unseen} \cap \cdots \cap C_{K, unseen}$; and globally unseen classes $C_{i, gu}$, in which $C_{i, gu} = C_{i, unseen} \setminus C_{i, lu}$.

Dbjective:
$$\mathcal{L}_{i}^{*} = \mathcal{L}_{i} + \beta \mathcal{R}_{i} + \gamma \mathcal{L}_{i}^{cal}$$

- Fundamental semi-supervised loss: $\mathcal{L}_i = \mathcal{L}_i^s + \alpha \mathcal{L}_i^u$, where \mathcal{L}_i^s is the standard cross-entropy loss on labeled data, \mathcal{L}_i^u is the pairwise unsupervised loss on unlabeled data.
- Uncertainty-aware loss: $\mathcal{R}_i = \frac{1}{n_i^u} \sum_{x_i^u \in \mathcal{D}_i^u} |\pi(x_j^u)|$, where $\pi(\cdot)$ is the data uncertainty function.
- Calibration module: $\mathcal{L}_i^{cal} = \mathcal{L}_i^{ce} + \mathcal{L}_i^{cluster}$, where \mathcal{L}_i^{ce} is global centroids-guided calibration loss, $\mathcal{L}_i^{cluster}$ is the additional loss for promoting clusterability of feature representations.

Workflow of FedoSSL



- Local training: 1) training on private dataset; 2) computing local centroids via Sinkhorn-Knopp based clustering algorithm.
- Upload both model parameters and local centroids to the server
- Global aggregation: 1) aggregating on local model parameters; 2) computing global centroids by again using Sinkhorn-Knopp clustering.

Evaluation Setup

Dataset:

- CIFAR-10, CIFAR-100, and CINIC-10
- We first divide classes into 60% seen and 40% unseen classes, then select 50% of seen classes as the labeled data and the rest as unlabeled data.

Baselines:

- 1) extending existing open-world SSL methods to FL environments:
 Fed-AO, Fed-RO, Fed-AN, Fed-RO
- 2) extending existing FedSSL methods to the open-world scenarios:
 - ➤ *SemiFL

FL environment:

- 1) 10 clients with 50% participation ratio;
- 2) 50 clients with 10% participation ratio

Performance Comparison to SOTA Baselines

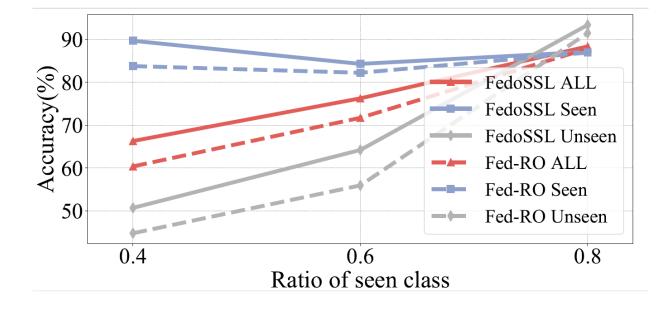
• Classification accuracy of compared methods on seen, unseen and all classes with 10 clients over three benchmark datasets.

	CIFAR-10 (%)				CIFAR-100 (%)				CINIC-10 (%)						
#Method	All	Seen	Unseen		All	Seen	Unseen		All	Seen	Unseen				
			LU.	GU.	AU.			LU.	GU.	AU.			LU.	GU.	AU.
Cen-O Cen-N	78.26 81.02		-	-	71.95 74.64		73.68 75.10	-	-	44.28 46.82	69.32 71.89		-	-	58.86 62.89
Local-O Local-N	65.98 67.67	79.57 83.95	-	-		43.10 45.28		-	-	26.25 27.34	55.33 57.31	65.23 65.70	-	-	40.48 44.73
Fed-AO Fed-RO Fed-AN Fed-RN	69.46 71.72 66.58 68.83	81.01 82.22 84.18 85.52		42.03 53.43 37.58 41.79	52.15 55.96 40.15 43.81	47.72 47.25	59.79 58.24	38.07 44.13 42.11 48.77	28.86 30.44	29.62 30.77	54.85 57.16 53.49 58.11	62.26 63.61	71.31 72.24 66.78 68.81	37.88 42.09 36.06 39.01	42.29 49.50 38.32 46.33
*SemiFL	64.91	81.57	86.33	31.16	39.92	42.28	54.94	31.68	21.46	23.29	52.27	62.72	64.53	37.21	37.34
FedoSSL	76.26	84.29	90.68	59.69	64.22	51.58	61.12	45.76	33.82	31.13	63.82	68.40	79.79	47.78	56.96

FedoSSL vs. SOTA Baselines:

- Over 11.10% performance gain on globally unseen classes.
- Over 14.76% performance gain on overall unseen classes.
- Reduce the performance gap between locally and globally unseen classes.

Environmental Sensitivity and Visualization



Number of Seen Class

Number of Local Centroids

L	All	Seen	Unseen				
-			LU.	GU.	AU.		
8	74.28	84.26	88.90	54.09	59.29		
16	75.76	84.17	89.28	58.36	63.15		
32	76.26	84.29	90.68	59.69	64.22		

Selection of clustering algorithm

	A11	Seen	Unseen			
			LU.	GU.	AU.	
No Privacy K-anonymity	77.19 76.26		89.76 90.68		64.05 64.22	

FedoSSL holds good performance on different environmental settings, i.e., insensitive to the hyperparameters.

Thank you!

Jie-comp.zhang@polyu.edu.hk