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Federated Learning (FL)

* Increasing strict laws on data protection
e.g., GDPR of EU, 2018; CCPA of USA, 2018; Cyber Security Law of China, 2017

* Federated Learning (FL) aims to collaboratively train a ML model while keeping

the data decentralized
FLserver% %
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Federated Supervised Learning

* Local training: each model trains the newest global model on local |abeled dataset,

then, uploading local updates to server
* Global aggregation: the server aggregates the updated local models to obtain new

global model
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‘ inputs: — — outputs:

(image, label),.. r predicted labels.
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Edge Devices Local Training

Supervised learning:
< >~ * Require all training data are labeled.
~—~ * |In many real-world applications, labeled
data are scarce.
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Federated Semi-Supervised Learning (FedSSL) 112!

& Notations:

* Local dataset onclienti: D; = DfU D}‘

Upload updated

local model
>
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Global model
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Labeled part on client i: Dl-l = {(xj,yj)}7i1
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Edge Device FL server Unlabeled part on clienti: D;” = {(xj)}j;1
Local dataset * The set of classes seen in full labeled data: C*
> _ --"TT " T T T T * The set of classes in full unlabeled data: C*
_ ~ Small-sized
+"  labeled dat ot : A
/ apeiec data ( Existing works consider a
( + 2 closed-world setting:
\ Abundant p l N
> unlabeled data C'=C py
N

} Question: how about C! # C%?
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[1] Lin et al. SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training, NeurIPS 2022.
[2] Jeong et al. Federated semi-supervised learning with inter-client consistency & disjoint learning. ICLR 2021. 4



Federated Open-world Semi-Supervised Learning (FedoSSL)

* Enabling efficient FedoSSL is challenging: cl = cu

» Challenge 1: Internal heterogeneity in each client
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Labeled data .7 Unseen classes: unknow classes compared |
| to the set of classes in labeled data.
> Challenge 2: External heterogeneity across different clients "o :

_________________________

Unlabeled data

Unlabeled data :
' on client j

on client i

Goal: Design efficient FedoSSL framework to overcome above two challenges.



Inspiration

 The unseen class can be further divided into two types according to the distribution

heterogeneity.
Exist in morethan 77777777 t '

one client? L
} e g

Locally Unseen . Globally Unseen:

_____________________________

Unlabeled data on client i

Exist in more than
one client?

Unlabeled data on client j Unlabeled data on client j

} Next Step: how to eliminate biased training among different types of unseen classes?
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Definition 1 (Locally unseen & globally unseen class): In FedoSSL, the unseen classes
C; unseenOn client i can be divided into two types: locally unseen classes C; 1, in which C; 1, =

Objective: LI=L;+PpR; + )/Lical

. L; = L7 + aL}, where L} is the standard cross-entropy

loss on labeled data, L} is the pairwise unsupervised loss on unlabeled data.

1 : . .
:R; = —yzxy@ﬂn(x}‘) , Where (-) is the data uncertainty function.
Tll ] l

L L5 = peeq peluster \where L£€ is global centroids-guided calibration loss,

LSt s the additional loss for promoting clusterability of feature representations.



Workflow of FedoSSL
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Global Centroids

e Local training: 1) training on private dataset; 2) computing local centroids via Sinkhorn-Knopp

based clustering algorithm.

e Upload both model parameters and local centroids to the server

o Global aggregation: 1) aggregating on local model parameters; 2) computing global centroids

by again using Sinkhorn-Knopp clustering.



Dataset:

* CIFAR-10, CIFAR-100, and CINIC-10

 We first divide classes into 60% seen and 40% unseen classes, then select 50% of

seen classes as the labeled data and the rest as unlabeled data.

Baselines:

e 1) extending existing open-world SSL methods to FL environments:
» Fed-AO, Fed-RO, Fed-AN, Fed-RO

e 2)extending existing FedSSL methods to the open-world scenarios:
> *SemiFL

FL environment:

e 1) 10 clients with 50% participation ratio;

e 2) 50 clients with 10% participation ratio



Performance Comparison to SOTA Baselines

* C(Classification accuracy of compared methods on seen, unseen and all classes with
10 clients over three benchmark datasets.

CIFAR-10 (%) CIFAR-100 (%) CINIC-10 (%)
#Method All  Seen Unseen | All  Seen Unseen | All  Seen Unseen
LU. GU. AU. | LU. GU. AU | LU. GU. AU.
Cen-O 78.26 86.63 - = 71.95 56.92 73.68 = = 4428 69.32 83.18 - = 58.86
Cen-N 81.02 89.47 - = 74.64 5898 75.10 = = 46.82 71.80 83.82 - = 62.89
Local-O 6598 79.57 - - 45.60 | 43.10 54.33 . - 26.25 [ 55.33 65.23 . . 40.48
Local-N  67.67 83.95 - - 43.26 | 45.28 57.24 . - 27.34 | 57.31 65.70 . . 4473

Fed-AO 6946 81.01 89.38 42.03 52.15|47.91 59.67 38.07 29.12 30.26 | 54.85 63.22 71.31 37.88 42.29
Fed-RO  71.72 8222 89.84 5343 5596 |47.72 59.79 44.13 28.86 29.62 |57.16 62.26 7224 42.09 49.50
Fed-AN  66.58 84.18 78.76 37.58 40.15|47.25 5824 4211 3044 30.77 | 53.49 63.61 66.78 36.06 38.32
Fed-RN  68.83 85.52 79.84 41.79 43.81 | 48.02 594 48.77 3036 3096 |58.11 6597 68.81 39.01 46.33

*SemiFL 6491 81.57 86.33 31.16 39.92|42.28 5494 31.68 21.46 23.29|52.27 62.72 64.53 37.21 37.34
FedoSSL 76.26 84.29 90.68 359.69 64.22 |51.58 61.12 4576 33.82 31.13 | 63.82 68.40 79.79 47.78 56.96

FedoSSL vs. SOTA Baselines:
}  Over 11.10% performance gain on globally unseen classes.
* Over 14.76% performance gain on overall unseen classes.

 Reduce the performance gap between locally and globally unseen classes.
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Environmental Sensitivity and Visualization

Accuracy(%)
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Selection of clustering algorithm
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FedoSSL holds good performance on different environmental settings, i.e.,

insensitive to the hyperparameters.
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