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Federated Learning (FL)
• Increasing strict laws on data protection

e.g., GDPR of EU, 2018; CCPA of USA, 2018; Cyber Security Law of China, 2017

Edge Devices

FL server

• Federated Learning (FL) aims to collaboratively train a ML model while keeping 
the data decentralized
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Federated Supervised Learning
• Local training: each model trains the newest global model on local labeled dataset, 

then, uploading local updates to server
• Global aggregation: the server aggregates the updated local models to obtain new 

global model

Edge Devices

FL server

inputs:
(image, label),…

outputs:
predicted labels.

Supervised learning: 
• Require all training data are labeled.
• In many real-world applications, labeled 

data are scarce.

Local Training
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Federated Semi-Supervised Learning (FedSSL) [1] [2]

Edge Device FL server

Cat Dog

+

Small-sized 
labeled data

Abundant 
unlabeled data

Upload updated 
local model

Global model

Local dataset

[1] Lin et al. SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training, NeurIPS 2022.
[2] Jeong et al. Federated semi-supervised learning with inter-client consistency & disjoint learning. ICLR 2021.

Notations:
• Local dataset on client 𝑖: 𝒟! = 𝒟!"⋃ 𝒟!#

• Labeled part on client 𝑖: 𝒟!" = 𝑥$, 𝑦$ $%&
'!
"

• Unlabeled part on client 𝑖: 𝒟!# = 𝑥$ $%&
'!
#

• The set of classes seen in full labeled data: 𝒞"

• The set of classes in full unlabeled data: 𝒞#

Existing works consider a 
closed-world setting:

𝒞! = 𝒞"

Question: how about 𝒞! ≠ 𝒞"?
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Federated Open-world Semi-Supervised Learning (FedoSSL)

Ø Challenge 1: Internal heterogeneity in each client

Ø Challenge 2: External heterogeneity across different clients

Cat Dog

Labeled data Unlabeled data
Unseen classesSeen classesSeen classes

• Enabling efficient FedoSSL is challenging: 𝒞! ≠ 𝒞"

𝒞#! ≠ 𝒞#"

Unlabeled data 
on client 𝑖 Unseen classes Unseen classes

Unlabeled data 
on client 𝑗

𝒞#" ≠ 𝒞$"…

Goal: Design efficient FedoSSL framework to overcome above two challenges.

Unseen classes: unknow classes compared 
to the set of classes in labeled data.
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Inspiration
• The unseen class can be further divided into two types according to the distribution 

heterogeneity. 

Unlabeled data on client 𝑖

Unseen classes

Unlabeled data on client 𝑖

Globally UnseenLocally  Unseen

Unseen classes

Unlabeled data on client 𝑗 Unlabeled data on client 𝑗

Globally UnseenLocally  Unseen

Exist in more than 
one client?

Exist in more than 
one client?

ü Car
X Monkey, horse 

Next Step: how to eliminate biased training among different types of unseen classes?
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Methodology: FedoSSL

Definition 1 (Locally unseen & globally unseen class): In FedoSSL, the unseen classes
𝒞!, #')**'on client 𝑖 can be divided into two types: locally unseen classes 𝒞!, "#, in which 𝒞!, "# =
𝒞&, #')**' ∩⋯𝒞+, #')**'; and globally unseen classes 𝒞!, ,#, in which 𝒞!, ,# = 𝒞!, #')**' ∖ 𝒞!, "#.

Objective: ℒ#∗ = ℒ# + 𝛽ℛ# + 𝛾ℒ#&'!

● Fundamental semi-supervised loss: ℒ! = ℒ!) + 𝛼ℒ!#, where ℒ!) is the standard cross-entropy
loss on labeled data, ℒ!# is the pairwise unsupervised loss on unlabeled data.

● Uncertainty-aware loss: ℛ! =
&
'!
#∑-$#∈𝒟!# 𝜋(𝑥$

#) , where 𝜋 ⋅ is the data uncertainty function.

● Calibration module: ℒ!01" = ℒ!0*+ ℒ!0"#)2*3, where ℒ!0* is global centroids-guided calibration loss,
ℒ!0"#)2*3 is the additional loss for promoting clusterability of feature representations.
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Workflow of FedoSSL

● Local training: 1) training on private dataset; 2) computing local centroids via Sinkhorn-Knopp
based clustering algorithm.

● Upload both model parameters and local centroids to the server
● Global aggregation: 1) aggregating on local model parameters; 2) computing global centroids

by again using Sinkhorn-Knopp clustering.
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Label=1

Client 𝐾...
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Evaluation Setup
Dataset:
• CIFAR-10, CIFAR-100, and CINIC-10
• We first divide classes into 60% seen and 40% unseen classes, then select 50% of 

seen classes as the labeled data and the rest as unlabeled data.
Baselines:
• 1) extending existing open-world SSL methods to FL environments: 

Ø Fed-AO, Fed-RO, Fed-AN, Fed-RO
• 2) extending existing FedSSL methods to the open-world scenarios: 

Ø *SemiFL
FL environment:
• 1) 10 clients with 50% participation ratio;
• 2) 50 clients with 10% participation ratio
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Performance Comparison to SOTA Baselines
• Classification accuracy of compared methods on seen, unseen and all classes with 

10 clients over three benchmark datasets.

FedoSSL vs. SOTA Baselines:
• Over 11.10% performance gain on globally unseen classes.
• Over 14.76% performance gain on overall unseen classes.
• Reduce the performance gap between locally and globally unseen classes.
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Environmental Sensitivity and Visualization

Number of Seen Class

FedoSSL holds good performance on different environmental settings, i.e., 
insensitive to the hyperparameters.

Number of Local Centroids

Selection of clustering algorithm
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