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DAMPED SPRING-MASS SYSTEM
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NEURAL NETWORK

⚠ ~300,000 parameters
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PHYSICS INFORMED NEURAL NETWORK

⚠ ~300,000 parameters

❌ Slow convergence

✅ Good inter/extrapolation

⚠ Requires extra points

⚠ Not an exact solution

❌ Hard to optimize
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How to solve?

Algebraic preprocessing

Solution Space

Gaussian process prior

where
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z +2 2z + 10 = 0 ⇒ z = 1 ± 3i

y(t) = e (c cos 3t +−t
1 c sin 3t)2

Y (t) ∼ e (C cos 3t +−t
1 C sin 3t) +2 ϵ

C ∼1 N (0, σ ), C ∼1 2 N (0, σ ), ϵ ∼2 N (0, σ )0



✅ 3 parameters

✅ Fast convergence

✅ Good inter/extrapolation

✅ Exact solution

✅ No extra points
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Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

Algebraic preprocessing Learned

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

• Any input dimension
• Any output dimension
• Any number of equations
• Any analytic property of the PDE (elliptic/hyperbolic/parabolic)

EPGP: Gaussian Process kernels constrained to PDE solutions

f(x) = D(x, z)e dμ(z)∫
V

i⟨x,z⟩
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ROOT MEAN SQUARE ERRORS

Datapoints

Model 5 10 50 100 1000 Training time (s)

EPGP (Ours) 3.5 2.4 0.19 0.0097 0.00047 70

PINN 4.72 4.1 1.06 0.73 0.092 200
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• EPGP: A class of Gaussian Process priors for
solving PDE

▪ S-EPGP: Sparse version
• Fully algorithmic
• No approximations anywhere  exact solutions⇒
• Improved accuracy and convergence speed

compared to PINN variants
• Compatible with standard GP techniques
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