$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =0 \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

GP PRIORS FOR SYSTEMS OF LINEAR PDE WITH CONSTANT COEFFICIENTS

Marc Härkönen ${ }^{1,2}$, Markus Lange-Hegermann ${ }^{3}$, Bogdan Raiță ${ }^{4}$
1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2Fano Labs, Hong Kong SAR, China
3Institute Industrial IT, TH-OWL, Lemgo, Germany
4Scuola Normale Superiore di Pisa, Pisa, Italy

DAMPED SPRING-MASS SYSTEM
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=0$
Sample 5 noisy points

NEURAL NETWORK

Epoch 2
! ~300,000 parameters
\checkmark Fast convergence
*Bad inter/extrapolation

! ~300,000 parameters
XSlow convergence
$\sqrt{ }$ Good inter/extrapolation
! Requires extra points
! Not an exact solution
*Hard to optimize
Epoch 10

How to solve?

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=0
$$

How to solve?
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=0$
Algebraic preprocessing

$$
z^{2}+2 z+10=0 \Rightarrow z=1 \pm 3 i
$$

How to solve?
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=0$
Algebraic preprocessing

$$
z^{2}+2 z+10=0 \Rightarrow z=1 \pm 3 i
$$

Solution Space

$$
y(t)=e^{-t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=0
$$

Algebraic preprocessing

$$
z^{2}+2 z+10=0 \Rightarrow z=1 \pm 3 i
$$

Solution Space

$$
y(t)=e^{-t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)
$$

Gaussian process prior

$$
Y(t) \sim e^{-t}\left(C_{1} \cos 3 t+C_{2} \sin 3 t\right)+\epsilon
$$

where

$$
C_{1} \sim \mathcal{N}\left(0, \sigma_{1}\right), C_{2} \sim \mathcal{N}\left(0, \sigma_{2}\right), \epsilon \sim \mathcal{N}\left(0, \sigma_{0}\right)
$$

V3 parameters
∇ Fast convergence
VGood inter/extrapolation
∇ Exact solution
∇ No extra points

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

- Any input dimension

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension
- Any number of equations

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
\begin{aligned}
& \qquad f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z) \\
& \text { Algebraic preprocessing } \quad \text { Learned }
\end{aligned}
$$

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension
- Any number of equations
- Any analytic property of the PDE (elliptic/hyperbolic/parabolic)

Ehrenpreis-Palamodov ('70): Solutions to PDE described by "Fourier" frequencies

$$
f(x)=\int_{V} D(x, z) e^{i\langle x, z\rangle} \mathrm{d} \mu(z)
$$

Algebraic preprocessing Learned

Works with arbitrary systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension
- Any number of equations
- Any analytic property of the PDE (elliptic/hyperbolic/parabolic)

EPGP: Gaussian Process kernels constrained to PDE solutions

$$
\frac{\partial^{2} z}{\partial t^{2}}=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}
$$

$\mathbf{E}(x, y, z, t)$
$\mathbf{B}(x, y, z, t)$

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =0 \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

ROOT MEAN SQUARE ERRORS
Datapoints

Model	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$	Training time (s)
EPGP (Ours)	3.5	2.4	0.19	0.0097	0.00047	70
PINN	4.72	4.1	1.06	0.73	0.092	200

- EPGP: A class of Gaussian Process priors for solving PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version
- Fully algorithmic

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version
- Fully algorithmic

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- No approximations anywhere \Rightarrow exact solutions
- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version
- Fully algorithmic

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants
- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version
- Fully algorithmic

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants
- Compatible with standard GP techniques
- EPGP: A class of Gaussian Process priors for solving PDE
- S-EPGP: Sparse version
- Fully algorithmic

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants
- Compatible with standard GP techniques

Paper website

