$$egin{aligned}
abla \cdot \mathbf{E} &= 0 \
abla \cdot \mathbf{B} &= 0 \
abla \cdot \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \
abla \cdot \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \
abla \cdot \mathbf{E} &= rac{\partial \mathbf{B}}{\partial t} \end{aligned}$$

GP PRIORS FOR SYSTEMS OF LINEAR PDE WITH CONSTANT COEFFICIENTS

Marc Härkönen^{1,2}, Markus Lange-Hegermann³, Bogdan Raiţă⁴

1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany 2Fano Labs, Hong Kong SAR, China 3Institute Industrial IT, TH-OWL, Lemgo, Germany 4Scuola Normale Superiore di Pisa, Pisa, Italy

ICML 2023

DAMPED SPRING-MASS SYSTEM

NEURAL NETWORK

Epoch 2

PHYSICS INFORMED NEURAL NETWORK

Epoch 10

$$rac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2rac{\mathrm{d}y}{\mathrm{d}t} + 10y =$$

= 0

$$rac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2rac{\mathrm{d}y}{\mathrm{d}t} + 10y =$$

Algebraic preprocessing

 $z^2+2z+10=0\Rightarrow z=1\pm 3i$

= 0

 $1\pm 3i$

$$rac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2rac{\mathrm{d}y}{\mathrm{d}t} + 10y =$$

Algebraic preprocessing

 $z^2+2z+10=0 \Rightarrow z=1\pm 3i$

Solution Space

 $y(t) = e^{-t}(c_1 \cos 3t + c_2 \sin 3t)$

= 0

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y}{\mathrm{d}t} + 10y = 0$$

Algebraic preprocessing

 $z^2+2z+10=0 \Rightarrow z=1\pm 3i$

Solution Space

 $y(t) = e^{-t}(c_1\cos 3t + c_2\sin 3t)$

Gaussian process prior

$$Y(t)\sim e^{-t}(oldsymbol{C}_1\cos 3t+oldsymbol{C}_2\sin 3t)$$

where

 $C_1 \sim \mathcal{N}(0,\sigma_1), C_2 \sim \mathcal{N}(0,\sigma_2), \epsilon \sim \mathcal{N}(0,\sigma_0)$

$\sin 3t) + \epsilon$

$$f(x) = \int_V D(x,z) e^{i\langle x,z
angle}$$

Algebraic preprocessing

 $\mathrm{d}\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle}$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

 $\mathrm{d}\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle}$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

• Any input dimension

 $\mathrm{d}\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle}$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension

 $\mathrm{d}\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle}$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension
- Any number of equations

 $\mathrm{d}\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle}$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

- Any input dimension
- Any output dimension
- *Any* number of equations
- *Any* analytic property of the PDE (elliptic/hyperbolic/parabolic)

 $d\mu(z)$

$$f(x) = \int_V D(x,z) e^{i \langle x,z
angle} \, \mathrm{d} \mu(z)$$

Algebraic preprocessing

Works with **arbitrary** systems of homogeneous linear PDE with constant coefficients

- *Any* input dimension
- Any output dimension
- *Any* number of equations
- *Any* analytic property of the PDE (elliptic/hyperbolic/parabolic)

EPGP: Gaussian Process kernels *constrained* to PDE solutions

 $rac{\partial^2 z}{\partial t^2} = rac{\partial^2 z}{\partial x^2} + rac{\partial^2 z}{\partial y^2}$

 $\mathbf{E}(x,y,z,t)$

 $egin{aligned}
abla \cdot \mathbf{E} &= 0 \
abla \cdot \mathbf{B} &= 0 \end{aligned} \
abla \cdot \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \cr
abla \cdot \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \cr
abla \cdot \mathbf{E} &= rac{\partial \mathbf{B}}{\partial t} \end{aligned}$

$\mathbf{B}(x,y,z,t)$

ROOT MEAN SQUARE ERRORS

Datapoints

Model	5	10	50	100	1000	Training time (s)
EPGP (Ours)	3.5	2.4	0.19	0.0097	0.00047	70
PINN	4.72	4.1	1.06	0.73	0.092	200

• EPGP: A class of Gaussian Process priors for solving PDE

- EPGP: A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version

- EPGP: A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version
- Fully algorithmic

- **EPGP:** A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version
- Fully algorithmic
- No approximations anywhere \Rightarrow exact solutions

- **EPGP:** A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version
- Fully algorithmic
- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants

- **EPGP:** A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version
- Fully algorithmic
- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants
- Compatible with standard GP techniques

- **EPGP:** A class of Gaussian Process priors for solving PDE
 - S-EPGP: Sparse version
- Fully algorithmic
- No approximations anywhere \Rightarrow exact solutions
- Improved accuracy and convergence speed compared to PINN variants
- Compatible with standard GP techniques

Paper website

