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NEURAL NETWORK

Epoch 2

1.0 o
0.8 -

0.0 A
I ~300,000 parameters

0.4 -

Fast convergence

0.2

)(Bad inter/extrapolation

*
*
*
*
L 4

0.0 A

.

g ““
.

“aggunt

- ']
Ll
* «
-
—0.2 A : @
. . .
. ]
. g

_04 -




PHYSICS INFORMED NEURAL NETWORK

I ~300,000 parameters
)(Slow convergence
Good inter/extrapolation

I Requires extra points

I Not an exact solution

)(Hard to optimize
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How to solve?
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How to solve?

d’y _dy
I 1 9% 10y = 0
aw Thq T

Algebraic preprocessing
22 +22+10=0=2=1+3;

Solution Space

y(t) = e *(c1 cos 3t + ¢y sin 3t)

Gaussian process prior

Y (t) ~ e "(C) cos3t + Cysin 3t) + €

where

Cl ~ N(0,0’l), Cg ~ N(0,0’g),e ~/ N(O,O’Q)




@ parameters
Fast convergence

Good inter/extrapolation
Exact solution

No extra points
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EPGP: Gaussian Process kernels constrained to PDE solutions
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ROOT MEAN SQUARE ERRORS

Datapoints

Model 5 10 50 100 1000 Training time (s)

EPGP (Ours) 3.5 2.4 0.19 0.0097 0.00047 70

PINN 472 41 1.06 0.73 0.092 200



Model = EPGP (ours)
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