Marginalization is not Marginal: No Bad VAE Local Minima when Learning Optimal Sparse Representations

> **David Wipf** Amazon Web Services

> > ICML, July 2023

Variational Autoencoders (VAE)

- □ Popular generative model, probabilistic AE extension
- □ 33573+ citations [Kingma & Welling, 2014; Rezende et al., 2014]

Variational Autoencoders (VAE)

- □ Popular generative model, probabilistic AE extension
- □ 33573+ citations [Kingma & Welling, 2014; Rezende et al., 2014]

Variational Autoencoders (VAE)

- □ Popular generative model, probabilistic AE extension
- □ 33573+ citations [Kingma & Welling, 2014; Rezende et al., 2014]

VAE (continuous data):

- □ Beyond generating samples, VAE global minima can be used to:
 - □ Compute the dimension of data manifolds.
 - □ Model/Exploit low-dimensional structure in data.

[Zheng et al., 2022]

- □ Beyond generating samples, VAE global minima can be used to:
 - □ Compute the dimension of data manifolds.
 - □ Model/Exploit low-dimensional structure in data.

[Zheng et al., 2022]

□ Simple representative example:

With linear decoder, VAE minima learn PCA dimensions.

[Dai et al., 2019; Lucas et al., 2019]

- □ Beyond generating samples, VAE global minima can be used to:
 - □ Compute the dimension of data manifolds.
 - □ Model/Exploit low-dimensional structure in data.

[Zheng et al., 2022]

□ Simple representative example:

With linear decoder, VAE minima learn PCA dimensions.

[Dai et al., 2019; Lucas et al., 2019]

- □ More broadly:
 - □ VAE global minima generalize many classical linear methods.
 - Useful for feature learning, interpretability, solving underdetermined inverse problems ...
 [Dai et al., 2021]

- □ Beyond generating samples, VAE global minima can be used to:
 - □ Compute the dimension of data manifolds.
 - □ Model/Exploit low-dimensional structure in data.

[Zheng et al., 2022]

□ Simple representative example:

With linear decoder, VAE minima learn PCA dimensions.

[Dai et al., 2019; Lucas et al., 2019]

- □ More broadly:
 - □ VAE global minima generalize many classical linear methods.
 - Useful for feature learning, interpretability, solving underdetermined inverse problems ...
 [Dai et al., 2021]
- These VAE capabilities can be formalized through the notion of optimal sparse representations.

Two VAE criteria

1)	Optimal reconstruction:	$\sum_{i} \left\{ E_{q_{\boldsymbol{\varphi}}(\mathbf{z} \mathbf{x}^{(i)})} \left[\left\ \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} [\mathbf{z}, \boldsymbol{\theta}] \right\ _{2}^{2} \right] \right\} = 0$
2)	Maximal # of latent dimensions set to prior:	$q_{\varphi}(z_j \mathbf{x}^{(i)}) = N(0,1), \forall i$ no benefit to reconstructions

[Dai et al., 2021]

Two VAE criteria

1) Optimal reconstruction:

$$\sum_{i} \left\{ E_{q_{\boldsymbol{\varphi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\left\| \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \left[\mathbf{z}, \boldsymbol{\theta} \right] \right\|_{2}^{2} \right] \right\} = 0$$

 $q_{\mathbf{\varphi}}\left(z_{j} \mid \mathbf{x}^{(i)}\right) = N(0,1), \quad \forall i$

 \diamond

2) Maximal # of latent dimensions set to prior:

[Dai et al., 2021]

 <u>Note</u>: Second criteria determines data manifold dimension.

Two VAE criteria

1) Optimal reconstruction: $\sum_{i} \left\{ E_{q_{\varphi}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\left\| \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \left[\mathbf{z}, \boldsymbol{\theta} \right] \right\|_{2}^{2} \right] \right\} = 0$ 2) Maximal # of latent dimensions set to prior: $q_{\varphi} \left(z_{j} \mid \mathbf{x}^{(i)} \right) = N(0,1), \quad \forall i \quad \begin{array}{c} \text{no benefit to} \\ \text{reconstructions} \end{array}$

[Dai et al., 2021]

 <u>Note</u>: Second criteria determines data manifold dimension.

 Under broad conditions, VAE global minima provably satisfy both criteria. [Zheng et al., 2022]

Two VAE criteria

1) Optimal reconstruction: $\sum_{i} \left\{ E_{q_{\varphi}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\left\| \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \left[\mathbf{z}, \boldsymbol{\theta} \right] \right\|_{2}^{2} \right] \right\} = 0$ 2) Maximal # of latent dimensions set to prior: $q_{\varphi} \left(z_{j} \mid \mathbf{x}^{(i)} \right) = N(0,1), \quad \forall i \quad \begin{array}{c} \text{no benefit to} \\ \text{reconstructions} \end{array}$

[Dai et al., 2021]

 <u>Note</u>: Second criteria determines data manifold dimension.

- Under broad conditions, VAE global minima provably satisfy both criteria. [Zheng et al., 2022]
- Open question: What about bad VAE local minima?

Observed data:

$$\mathbf{X} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{n} \in \mathbb{R}^{d \times n}$$

• Observed data:

$$\mathbf{X} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{n} \in \mathbb{R}^{d \times n}$$

□ Assumed ground-truth model:

$$\mathbf{X} = \mathbf{\Phi}\mathbf{U}_{0}, \quad \mathbf{\Phi} \in \mathbb{R}^{d \times \kappa}, \quad \mathbf{U}_{0} \in \mathbb{R}^{\kappa \times n}$$

dictionary

unknown row-sparse coefficients

optimal sparse representation

Observed data:

$$\mathbf{X} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{n} \in \mathbb{R}^{d \times n}$$

Assumed ground-truth model:

$$\mathbf{X} = \mathbf{\Phi}\mathbf{U}_{0}, \quad \mathbf{\Phi} \in \mathbb{R}^{d \times \kappa}, \quad \mathbf{U}_{0} \in \mathbb{R}^{\kappa \times n}$$

known feature
dictionary row-sparse
coefficients optimal sparse
representation

NP-hard inverse problem: U

$$\mathbf{U}_{0} = \arg\min_{\mathbf{U}} \rho_{0}(\mathbf{U}), \quad \text{s.t. } \mathbf{X} = \mathbf{\Phi}\mathbf{U}, \quad \rho_{0}(\mathbf{U}) \triangleq \sum_{j=1}^{\kappa} \mathbf{1} \left[\left\| \mathbf{u}_{(j)} \right\|_{2} \neq 0 \right] \quad \left\{ \text{ counts # of nonzero rows} \right\}$$

[Cotter et al., 2005; Lee et al., 2012; Adcock et al., 2019]

• Observed data:

$$\mathbf{X} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{n} \in \mathbb{R}^{d \times n}$$

□ Assumed ground-truth model:

$$\mathbf{X} = \mathbf{\Phi}\mathbf{U}_{0}, \quad \mathbf{\Phi} \in \mathbb{R}^{d \times \kappa}, \quad \mathbf{U}_{0} \in \mathbb{R}^{\kappa \times n}$$

known feature
dictionary row-sparse
coefficients optimal sparse
representation

□ NP-hard inverse problem:

$$\mathbf{U}_{0} = \arg\min_{\mathbf{U}} \rho_{0}(\mathbf{U}), \quad \text{s.t. } \mathbf{X} = \mathbf{\Phi}\mathbf{U}, \quad \rho_{0}(\mathbf{U}) \triangleq \sum_{j=1}^{\kappa} \mathbf{1} \left[\left\| \mathbf{u}_{(j)} \right\|_{2} \neq 0 \right] \quad \left\{ \text{ counts # of nonzero rows} \right\}$$

[Cotter et al., 2005; Lee et al., 2012; Adcock et al., 2019]

□ Applications:

[Bannier et al., 2021; Bhutada et al., 2022; Cai et al., 2018]

□ VAE components for multiple sparse regression: Decoder: $\mu_x[z, \theta] = \Phi \operatorname{diag}[w_x]z$, $\Sigma_x[z, \theta] = \lambda I$, $\theta = \{w_x, \lambda\}$

□ VAE components for multiple sparse regression: Decoder: $\mu_x[z, \theta] = \Phi \operatorname{diag}[w_x]z$, $\Sigma_x[z, \theta] = \lambda I$, $\theta = \{w_x, \lambda\}$ Encoder: $\mu_z[x, \phi] = W_z x$, $\Sigma_z[x, \phi] = SS^T$, $\phi = \{W_z, S\}$

- □ VAE components for multiple sparse regression: Decoder: $\mu_x[z, \theta] = \Phi \operatorname{diag}[w_x]z$, $\Sigma_x[z, \theta] = \lambda I$, $\theta = \{w_x, \lambda\}$ Encoder: $\mu_z[x, \phi] = W_z x$, $\Sigma_z[x, \phi] = SS^T$, $\phi = \{W_z, S\}$
- □ Resulting VAE energy function (i.e., ELBO):

$$L_{VAE} \left(\boldsymbol{\theta}, \boldsymbol{\phi} \right) = \sum_{i=1}^{n} \left\{ E_{q_{\boldsymbol{\phi}} \left(\mathbf{z} | \mathbf{x}^{(i)} \right)} \left[\frac{1}{\lambda} \left\| \mathbf{x}^{(i)} - \boldsymbol{\Phi} \operatorname{diag} \left[\mathbf{w}_{\mathbf{x}} \right] \mathbf{z} \right\|_{2}^{2} \right] + d \log \lambda$$
 nonconvex,
+ tr $\left[\mathbf{S} \mathbf{S}^{T} \right] - \log \left| \mathbf{S} \mathbf{S}^{T} \right| + \left\| \mathbf{W}_{\mathbf{z}} \mathbf{x}^{(i)} \right\|_{2}^{2} \right\}$ local minima

- □ VAE components for multiple sparse regression: Decoder: $\mu_x[z, \theta] = \Phi \operatorname{diag}[w_x]z$, $\Sigma_x[z, \theta] = \lambda I$, $\theta = \{w_x, \lambda\}$ Encoder: $\mu_z[x, \phi] = W_z x$, $\Sigma_z[x, \phi] = SS^T$, $\phi = \{W_z, S\}$
- □ Resulting VAE energy function (i.e., ELBO):

$$L_{VAE} \left(\boldsymbol{\theta}, \boldsymbol{\phi} \right) = \sum_{i=1}^{n} \left\{ E_{q_{\boldsymbol{\phi}} \left(\mathbf{z} | \mathbf{x}^{(i)} \right)} \left[\frac{1}{\lambda} \left\| \mathbf{x}^{(i)} - \boldsymbol{\Phi} \operatorname{diag} \left[\mathbf{w}_{\mathbf{x}} \right] \mathbf{z} \right\|_{2}^{2} \right] + d \log \lambda \right.$$

$$+ \operatorname{tr} \left[\mathbf{S} \mathbf{S}^{T} \right] - \log \left| \mathbf{S} \mathbf{S}^{T} \right| + \left\| \mathbf{W}_{\mathbf{z}} \mathbf{x}^{(i)} \right\|_{2}^{2} \right\}$$

$$\xrightarrow{\text{nonconvex, potentially many local minima}}$$

□ Analogous AE for multiple sparse regression:

$$L_{AE} \left(\mathbf{w}_{\mathbf{x}}, \mathbf{W}_{\mathbf{z}} \right) = \sum_{i=1}^{n} \frac{1}{\lambda} \left\| \mathbf{x}^{(i)} - \mathbf{\Phi} \operatorname{diag} \left[\mathbf{w}_{\mathbf{x}} \right] \mathbf{z}^{(i)} \right\|_{2}^{2} + g \left(\left\| \mathbf{w}_{\mathbf{x}} \right\|_{2} \right) + \sum_{j=1}^{\kappa} h \left(\left\| \mathbf{z}_{(j)} \right\|_{2} \right)$$

s.t. $\mathbf{Z} = \mathbf{W}_{\mathbf{z}} \mathbf{X} \in \mathbb{R}^{\kappa \times n}$ for avoiding promotes scaling ambiguity row sparsity

Assume: $\mathbf{X} = \mathbf{\Phi} \mathbf{U}_0 \in \mathbb{R}^{d \times n}, \ \rho_0 (\mathbf{U}_0) < d \ (+ \text{ other minor tech. cond. on } \mathbf{\Phi})$

Assume: $\mathbf{X} = \mathbf{\Phi}\mathbf{U}_0 \in \mathbb{R}^{d \times n}, \ \rho_0(\mathbf{U}_0) < d \ (+ \text{ other minor tech. cond. on } \mathbf{\Phi})$

Denote: $\{\boldsymbol{\theta}^*, \boldsymbol{\phi}^*\} \equiv \{\mathbf{w}_x^*, \mathbf{W}_z^*, \mathbf{S}^*\} = \text{ any local minimum of } L_{VAE}(\boldsymbol{\theta}, \boldsymbol{\phi}) \text{ as } \lambda \to 0$

Assume: $\mathbf{X} = \mathbf{\Phi}\mathbf{U}_0 \in \mathbb{R}^{d \times n}, \ \rho_0(\mathbf{U}_0) < d \ (+ \text{ other minor tech. cond. on } \mathbf{\Phi})$

Denote: $\{\boldsymbol{\theta}^*, \boldsymbol{\phi}^*\} \equiv \{\mathbf{w}_x^*, \mathbf{W}_z^*, \mathbf{S}^*\} = \text{ any local minimum of } L_{VAE}(\boldsymbol{\theta}, \boldsymbol{\phi}) \text{ as } \lambda \to 0$

Theorem (informal version)

If \mathbf{U}_0 has nonzero row norms with sufficiently different *scales*, then we have that:

i)
$$\mathbf{U}_0 \implies$$
 unique optimal sparse representation

ii)
$$\{\mathbf{w}_{\mathbf{x}}^*, \mathbf{W}_{\mathbf{z}}^*, \mathbf{S}^*\}$$
 is a VAE global minimum

iii) diag
$$\begin{bmatrix} \mathbf{w}_{\mathbf{x}}^* \end{bmatrix} \mathbf{W}_{\mathbf{z}}^* \mathbf{X} = \mathbf{U}_0$$

iv) <u>No</u> analogous AE can satisfy equivalent recovery result

bad local and/or global minima cannot be ruled out

Assume: $\mathbf{X} = \mathbf{\Phi}\mathbf{U}_0 \in \mathbb{R}^{d \times n}, \ \rho_0(\mathbf{U}_0) < d \ (+ \text{ other minor tech. cond. on } \mathbf{\Phi})$

Denote: $\{\boldsymbol{\theta}^*, \boldsymbol{\phi}^*\} \equiv \{\mathbf{w}_x^*, \mathbf{W}_z^*, \mathbf{S}^*\} = \text{ any local minimum of } L_{VAE}(\boldsymbol{\theta}, \boldsymbol{\phi}) \text{ as } \lambda \to 0$

Theorem (informal version)

If \mathbf{U}_0 has nonzero row norms with sufficiently different *scales*, then we have that:

i)
$$\mathbf{U}_0 \implies$$
 unique optimal sparse representation

ii)
$$\{\mathbf{w}_{\mathbf{x}}^*, \mathbf{W}_{\mathbf{z}}^*, \mathbf{S}^*\}$$
 is a VAE global minimum

iii) diag
$$\begin{bmatrix} \mathbf{w}_{\mathbf{x}}^* \end{bmatrix} \mathbf{W}_{\mathbf{z}}^* \mathbf{X} = \mathbf{U}_0$$

iv) <u>No</u> analogous AE can satisfy equivalent recovery result

bad local and/or global minima <u>cannot</u> be ruled out

How is this possible?

Marginalization over VAE latent space introduces selective smoothing effect

<u>Goal</u>: Recover ground-truth \mathbf{U}_0 from observations $\mathbf{X} = \mathbf{\Phi} \mathbf{U}_0$

<u>Goal</u>: Recover ground-truth \mathbf{U}_0 from observations $\mathbf{X} = \mathbf{\Phi} \mathbf{U}_0$

<u>Goal</u>: Recover ground-truth \mathbf{U}_0 from observations $\mathbf{X} = \mathbf{\Phi} \mathbf{U}_0$

<u>Goal</u>: Recover ground-truth \mathbf{U}_0 from observations $\mathbf{X} = \mathbf{\Phi} \mathbf{U}_0$

 Φ = leadfield matrix, highly correlated columns

Summary

Prior work has shown that the VAE global minima can provably recover low-dimensional structure in data.

But previously no strict guarantees (outside of cases that reduce to PCA) regarding bad local minima.

We demonstrate a challenging regime whereby all VAE local minima produce optimal sparse representations.

□ Made possible by VAE marginalization.

□ Practical relevance:

- Helps to explain the effectiveness of VAEs in modeling lowdimensional structure in data.
- □ Motivates diverse VAE use cases beyond generating samples.
- Theory makes accurate predictions regarding empirical VAE behavior in broader regimes of interest, e.g., more complex decoders.

Thank You

Links:

- □ http://www.davidwipf.com/
- □ http://www.dgl.ai/

