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Affinity & Spatial Propagation

Spatial Propagation Network (SPN)

» It contains a guidance network and a propagation module.

» The guidance network learns pixel-wise relationships, affinity.

» Using the learned affinity, the propagation module can improve the details
by incorporating contextual information.

Propagation

[CSPN] Xinjing et al. Depth estimation via affinity learned with convolutional spatial propagation network. In ECCV, 2018




Problem Definition

Occurrence of bleeding error
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> To alleviate the vagueness of measuring pixel affinity, a hierarchical structure was proposed as a

solution in several pioneer studies.
- Edge-preserving filter (Bao et al., 2013; Dai et al., 2015)
- Non-local cost aggregation (Yang, 2012; 2014)
- Measure the image boundary connectivity (Tu et al., 2016)




Hierarchical Structures in Affinity Learning

Pixel hierarchy in spatial propagation task
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Hyperbolic Embedding for Hierarchical Structure
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« [Exponential growth property] Compared to Euclidean space, the volume of hyperbolic space grows
exponentially with the radius, allowing exponentially growing hierarchies and tree-like structures.

- [Distinction Property] By embedding pixel features into hyperbolic space, it alleviates the bleeding
problem by enhancing the “Distinction” between unrelated pixel features.




Working of HAM

Hyperbolic Affinity learning Module (HAM)
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Working of HAM

Hyperbolic Affinity learning Module (HAM)

Input Feature Poincaré Embedding
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Working of HAM

Hyperbolic Affinity learning Module (HAM)
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Working of HAM

Input Feature Poincaré Embedding p-priority & Geodesic-weight | Convolution Output Feature
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Beta-priority
» Assign a priority for the closer hyperbolic feature vectors.
> Rearranges features in the order of the distance between a reference pixel and its neighbors.




Working of HAM

Input Feature Poincaré Embedding p-priority & Geodesic-weight | Convolution Output Feature
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Geodesic weight

> Selectively aggregate pixel information with high affinity values.
» Normalize the geodesic distances among pixels and conduct weighted aggregation.




Experiments & Results
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Experiments & Results
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Experiments & Results

Depth Completion

NYUv2 ScanNet Virtual-KITTIv2

RMSE MAE iRMSE iMAE REL 6!,. RMSE MAE iRMSE iMAE REL 6},. RMSE MAE iRMSE iMAE REL

)
CSPN 0.116 0.048 0.018 0.007 0.017 0993 0.080 0.027 0.027 0.009 0.014 0993 12.233 8261 0.035 0.023 0.606 0.
Naive 0.108 0.043 0.017 0.006 0.015 0.994 0.078 0.027 0.026 0.009 0.014 0993 10946 7.266 0.034 0.022 0.539 0
Ours 0.102 0.036 0.016 0.006 0.014 0994 0.073 0.024 0.027 0.009 0.013 0993 9.612 6.661 0.030 0.021 0.489 0




Experiments & Results

Semantic Segmentation

Pascal Context NYUv2 ADE20K
mloU Pix-Acc mloU Pix-Ace mloU Pix-Acc
Sim-Deeplab  57.12 72.69 28.42 57.09 21.69 60.09
DifNet 59.77 74.19 28.91 57.48 23.30 63.21
Naive 60.18 74.51 28.19 56.78 23.44 63.92
Ours 60.30 74.81 30.45 58.97 25.28 63.94

GT Sim-Deeplab DifNet

Naive

Ours




Experiments & Results

Qualitative comparison of affinity maps




Experiments & Results

lllustrations of similarity maps
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Thanks for your attention!

Learning Affinity with Hyperbolic
Representation for Spatial Propagation

https.//github.com/JinhwiPark/HyperbolicSpatialPropagation



	Learning Affinity with Hyperbolic Representation �for Spatial Propagation
	Affinity & Spatial Propagation
	Affinity & Spatial Propagation
	Affinity & Spatial Propagation
	Affinity & Spatial Propagation
	Affinity & Spatial Propagation
	Affinity & Spatial Propagation
	Problem Definition
	Problem Definition
	Hierarchical Structures in Affinity Learning
	Hyperbolic Embedding for Hierarchical Structure
	Working of HAM
	Working of HAM
	Working of HAM
	Working of HAM
	Working of HAM
	Experiments & Results
	Experiments & Results
	Experiments & Results
	Experiments & Results
	Experiments & Results
	Experiments & Results
	Thanks for your attention!

