

Learning to Learn from APIs: Black-Box Data-Free Meta-Learning

Zixuan Hu¹, Li Shen², Zhenyi Wang³, Baoyuan Wu⁴, Chun Yuan¹, Dacheng Tao⁵

1Tsinghua Shenzhen International Graduate School, China; 2 JD Explore Academy, China; 3 State University of New York at Buffalo, USA;

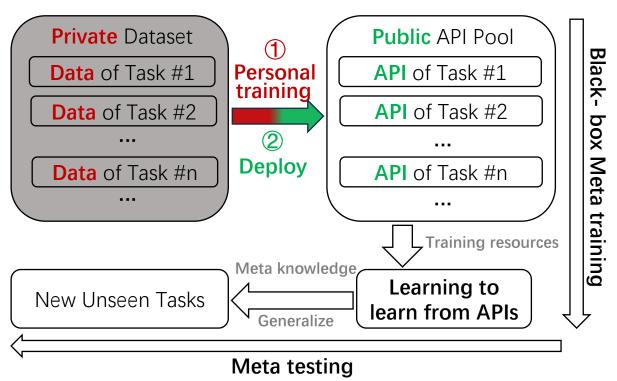
4 the Chinese University of Hong Kong, Shenzhen, China; 5 the University of Sydney, Australia

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Overview

Learning to Learn from APIs (Black-box Data-free Meta-learning):

Model as A Service (e.g., Cloud Vision API, ChatGPT)



Goal:

Learning to learn from APIs or Black-box Data-free Metalearning aims to enable efficient learning of new unseen tasks by meta-learning the meta-knowledge from a collection of black-box APIs without access to their private training data and with only query access.

Challenges:

- **Data-free:** no access to the original training data
- **Black-box:** with only query access to the APIs and with no prior knowledge of the underlying model architecture and parameters inside each API
- **Privacy-preserving:** no privacy leakage of original training data
- **Model-agnostic:** each API may correspond to arbitrary underlying model architectures and model scale.

Motivation

What information can we obtain from numerous public APIs of different tasks?

Model parameters

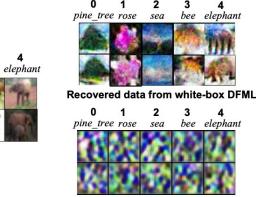
pine tree rose

CIFAF-FS

- Model architectures DRO[1](UAI, 2022)
- Underlying data knowledge PURER[2](CVPR, 2023)

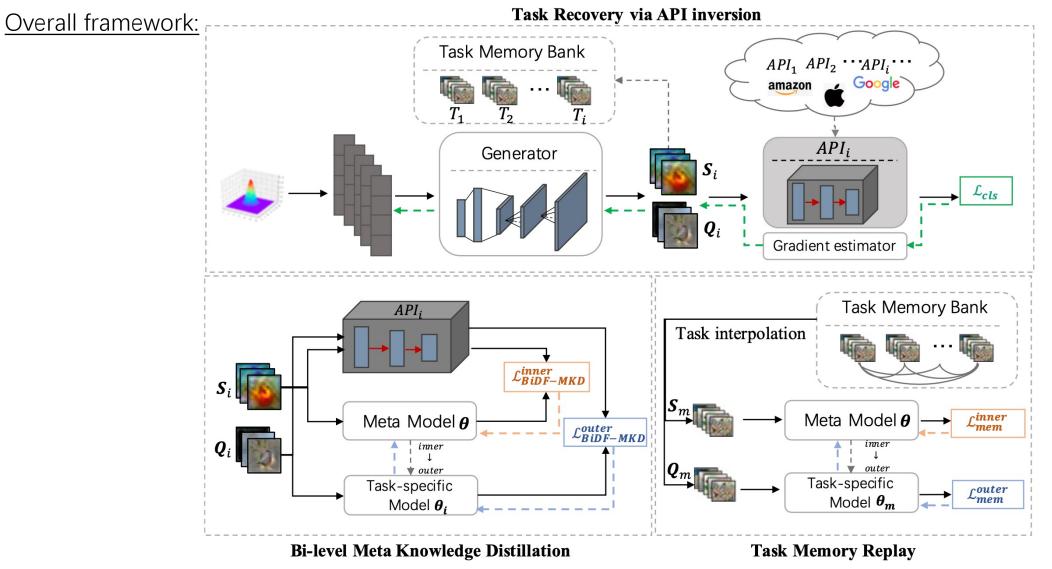
Challenges	DRO[1]	PURER[2]	Ours
Data-free			
Black-box	×	×	
Privacy-preserving		×	
Model-agnostic	×		

Explore underlying data knowledge contained in APIs in a safe (privacy-preserving) way:



Recovered data from ours

[1] Zhenyi Wang, et al. Meta-learning without data via Wasserstein distributionally-robust model fusion. UAI 2022.
 [2] Zixuan Hu, et al. Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning. CVPR 2023.
 Learning to Learn from APIs: Black-Box Data-Free Meta-Learning



Pseudo task recovery via API inversion:

1. Objective function

$$\min_{\boldsymbol{Z},\boldsymbol{\theta}_{G}} \mathcal{L}_{cls}(\hat{\boldsymbol{X}}) = \frac{1}{|\hat{\boldsymbol{X}}|} \sum_{(\hat{\boldsymbol{x}},y)\in(\hat{\boldsymbol{X}},\boldsymbol{Y})} l_{cls}(\hat{\boldsymbol{x}},y), \text{ s.t. } \hat{\boldsymbol{X}} = G(\boldsymbol{Z};\boldsymbol{\theta}_{G}), \ \ell_{cls}(\hat{\boldsymbol{x}},y) = CE(A_{i}(\hat{\boldsymbol{x}}),y)$$

2. Gradient backward propogation

3. Zero-order optimization by querying APIs

$$\begin{aligned} \boldsymbol{\theta}_{G}^{t+1} &= \boldsymbol{\theta}_{G}^{t} - \eta \nabla_{\boldsymbol{\theta}_{G}} \mathcal{L}_{cls} \\ \boldsymbol{z}^{t+1} &= \boldsymbol{z}^{t} - \eta \nabla_{\boldsymbol{z}} \mathcal{L}_{cls}. \\ \nabla_{\boldsymbol{\theta}_{G}} \mathcal{L}_{cls} &= \frac{\partial \mathcal{L}_{cls}}{\partial \boldsymbol{\theta}_{G}} = \frac{1}{|\hat{\boldsymbol{X}}|} \sum_{\hat{\boldsymbol{x}} \in \hat{\boldsymbol{X}}} \left[\frac{\partial \ell_{cls}}{\partial \hat{\boldsymbol{x}}} \times \frac{\partial \hat{\boldsymbol{x}}}{\partial \boldsymbol{\theta}_{G}} \right] \\ \nabla_{\boldsymbol{z}} \mathcal{L}_{cls} &= \frac{\partial \mathcal{L}_{cls}}{\partial \boldsymbol{z}} = \frac{\partial \ell_{cls}}{\partial \hat{\boldsymbol{x}}} \times \frac{\partial \hat{\boldsymbol{x}}}{\partial \boldsymbol{z}} \end{aligned}$$
 intractable

$$\begin{aligned} \hat{\nabla}_{\hat{\boldsymbol{x}}} \mathcal{L}_{cls} &= \frac{\partial \mathcal{L}_{cls}}{\partial \boldsymbol{z}} = \frac{\partial \ell_{cls}}{\partial \hat{\boldsymbol{x}}} \times \frac{\partial \hat{\boldsymbol{x}}}{\partial \boldsymbol{z}} \end{aligned}$$

Bi-level meta knowledge distillation for meta-learning:

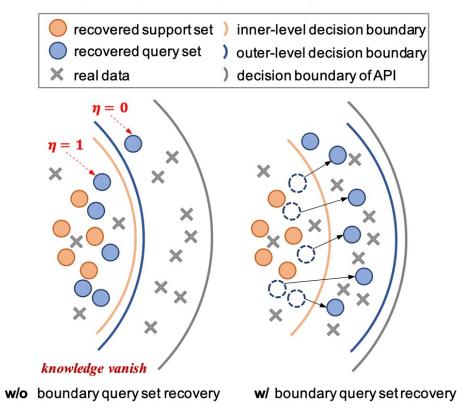
$$\begin{split} \min_{\boldsymbol{\theta}} \ \mathcal{L}_{BiDf-MKD}^{outer}(\boldsymbol{\theta}) &= \sum_{\hat{\boldsymbol{x}} \in \boldsymbol{Q}_i} \ell_{KL}(F(\hat{\boldsymbol{x}};\boldsymbol{\theta}_i), A_i(\hat{\boldsymbol{x}})), \\ \text{s.t.} \ \boldsymbol{\theta}_{i} &= \min_{\boldsymbol{\theta}} \mathcal{L}_{BiDf-MKD}^{\text{inner}} \triangleq \min_{\boldsymbol{\theta}} \sum_{\hat{\boldsymbol{x}} \in \boldsymbol{S}_i} \ell_{KL}(F(\hat{\boldsymbol{x}};\boldsymbol{\theta}), A_i(\hat{\boldsymbol{x}})) \end{split}$$

Task-memory replay:

$$\begin{split} \min_{\boldsymbol{\theta}} \ \mathcal{L}_{mem}^{outer} &= \mathcal{L}_{cls}(F(\boldsymbol{Q}_m; \boldsymbol{\theta}_m), \boldsymbol{Y}_{\boldsymbol{Q}_m}), \\ \text{s.t.} \ \boldsymbol{\theta}_{m} &= \min_{\boldsymbol{\theta}} \mathcal{L}_{mem}^{\text{inner}} \triangleq \min_{\boldsymbol{\theta}} \mathcal{L}_{cls}(F(\boldsymbol{S}_m; \boldsymbol{\theta}), \boldsymbol{Y}_{\boldsymbol{S}_m}) \end{split}$$

Knowledge vanish issue of data-free meta-learning:

Definition 4.1. The *complete knowledge vanish* of metalearning occurs when the outer-level optimization can be ignored, namely the mutual information $I(\boldsymbol{\theta}; \boldsymbol{Q}_i | \boldsymbol{\theta}_i, \boldsymbol{S}_i) =$ 0 (or $H(\boldsymbol{\theta} | \boldsymbol{\theta}_i, \boldsymbol{S}_i) = H(\boldsymbol{\theta} | \boldsymbol{\theta}_i, \boldsymbol{S}_i, \boldsymbol{Q}_i)$).



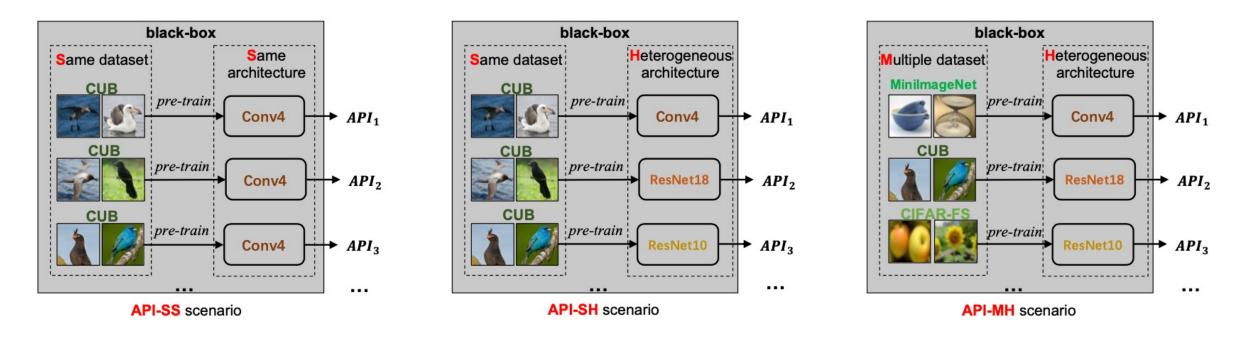
Boundary query set recovery:

$$\min_{\boldsymbol{z},\boldsymbol{\theta}_{G}} \ \ell_{Q}(\hat{\boldsymbol{x}}, \boldsymbol{y}) \\ = CE(A_{i}(\hat{\boldsymbol{x}}), \boldsymbol{y}) - \lambda_{Q} \cdot \eta \cdot \ell_{KL}(F(\hat{\boldsymbol{x}}; \boldsymbol{\theta}_{i}), A_{i}(\hat{\boldsymbol{x}})), \\ \text{s.t.} \ \hat{\boldsymbol{x}} = G(\boldsymbol{z}; \boldsymbol{\theta}_{G}), \\ \eta = \mathbb{I}\{\arg \max F(\hat{\boldsymbol{x}}; \boldsymbol{\theta}_{i}) = \arg \max A_{i}(\hat{\boldsymbol{x}})\}.$$

Experiments

Three real-world scenarios:

API-SS: All APIs are designed for solving tasks from the Same meta training subset with the Same architecture inside API-SH: All APIs are designed for solving tasks from the Same meta training subset but with Heterogeneous architectures inside API-MH: All APIs are designed for solving tasks from Multiple meta training subsets with Heterogeneous architectures inside



Experiments

Main results:

Table 1.	Compare to	baselines in	API-SS	scenario.

API-SS	Method	1-shot	5-shot
	Random	20.35 ± 0.42	20.59 ± 0.45
CIFAR-FS	Best-API	19.04 ± 0.68	19.04 ± 0.67
5-way	Single-DFKD	20.04 ± 0.63	20.14 ± 0.64
5-way	Distill-Avg	24.24 ± 0.46	27.56 ± 0.51
	Ours	$\textbf{35.48} \pm \textbf{0.67}$	$\textbf{47.58} \pm \textbf{0.74}$
MiniImageNet	Random	21.20 ± 0.38	21.13 ± 0.37
	Best-API	20.51 ± 0.63	20.39 ± 0.62
	Single-DFKD	20.03 ± 0.60	20.14 ± 0.66
5-way	Distill-Avg	20.53 ± 0.20	21.24 ± 0.24
	Ours	$\textbf{29.35} \pm \textbf{0.60}$	$\textbf{39.47} \pm \textbf{0.64}$
	Random	21.09 ± 0.38	21.11 ± 0.37
CUB	Best-API	19.99 ± 0.69	19.95 ± 0.70
	Single-DFKD	19.56 ± 0.64	20.06 ± 0.64
5-way	Distill-Avg	21.07 ± 0.25	21.97 ± 0.30
	Ours	$\textbf{29.10} \pm \textbf{0.64}$	$\textbf{43.43} \pm \textbf{0.66}$

Table 3. Compare to baselines in API-MH scenario. International Conference On Machine Learning

API-MH	Method	1-shot	5-shot
5-way	Random Best-API Single-DFKD Distill-Avg Ours	$\begin{array}{c} 20.88 \pm 0.39 \\ 19.44 \pm 0.65 \\ 19.04 \pm 0.66 \\ 21.57 \pm 0.25 \\ \hline \textbf{32.78 \pm 0.60} \end{array}$	$\begin{array}{c} 21.00 \pm 0.40 \\ 19.64 \pm 0.66 \\ 19.68 \pm 0.64 \\ 23.11 \pm 0.29 \\ \textbf{40.24} \pm \textbf{0.65} \end{array}$

Table 2. Compare to baselines in API-SH scenario.

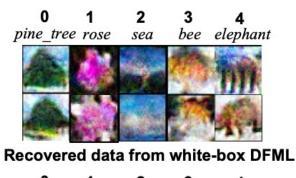
API-SH	Method	1-shot	5-shot
CIFAR-FS 5-way	Random Best-API Single-DFKD Distill-Avg Ours	$\begin{array}{c} 20.35 \pm 0.42 \\ 19.04 \pm 0.68 \\ 19.56 \pm 0.67 \\ 22.82 \pm 0.38 \\ \textbf{35.58} \pm \textbf{0.79} \end{array}$	$\begin{array}{c} 20.59 \pm 0.45 \\ 19.04 \pm 0.67 \\ 20.06 \pm 0.60 \\ 25.91 \pm 0.45 \\ \textbf{46.92} \pm \textbf{0.77} \end{array}$
MiniImageNet 5-way	Random Best-API Single-DFKD Distill-Avg Ours	$\begin{array}{c} 21.20 \pm 0.38 \\ 20.51 \pm 0.63 \\ 20.11 \pm 0.64 \\ 20.32 \pm 0.22 \\ \textbf{30.55} \pm \textbf{0.62} \end{array}$	$\begin{array}{c} 21.13 \pm 0.37 \\ 20.39 \pm 0.62 \\ 20.23 \pm 0.66 \\ 20.67 \pm 0.24 \\ \textbf{39.74} \pm \textbf{0.65} \end{array}$
CUB 5-way	Random Best-API Single-DFKD Distill-Avg Ours	$\begin{array}{c} 21.09 \pm 0.38 \\ 19.99 \pm 0.69 \\ 20.13 \pm 0.66 \\ 20.46 \pm 0.24 \\ \textbf{30.11} \pm \textbf{0.58} \end{array}$	$\begin{array}{c} 21.11 \pm 0.37 \\ 19.95 \pm 0.70 \\ 20.24 \pm 0.64 \\ 21.02 \pm 0.26 \\ \textbf{43.98} \pm \textbf{0.64} \end{array}$

Results

Data privacy:

0 1 2 3 4 pine_tree rose sea bee elephant

CIFAF-FS





Recovered data from ours

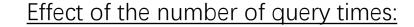
Table 5. Effectiveness of zero-order gradient estimator. Grey: unfair comparison with white-box DFML.

Zero-order VS. First-order (black-box VS. white-box):

API-SS	Method	1-shot	5-shot
CIFAR-FS 5-way	FO ZO	$\begin{array}{c} 37.66 \pm 0.75 \\ 35.48 \pm 0.67 \end{array}$	$\begin{array}{c} 51.16 \pm 0.79 \\ 47.58 \pm 0.74 \end{array}$
MiniImageNet 5-way	FO ZO	$\begin{array}{c} 30.66 \pm 0.59 \\ 29.35 \pm 0.60 \end{array}$	$\begin{array}{c} 42.30 \pm 0.64 \\ 39.47 \pm 0.64 \end{array}$
CUB 5-way	FO ZO	$\begin{array}{c} 31.62 \pm 0.60 \\ 29.10 \pm 0.64 \end{array}$	$\begin{array}{c} 44.32 \pm 0.69 \\ 43.43 \pm 0.66 \end{array}$

Results

Effect of the number of APIs:



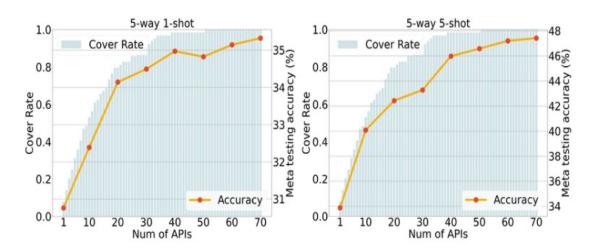


Figure 5. Effect of the number of APIs in API-SS scenario.

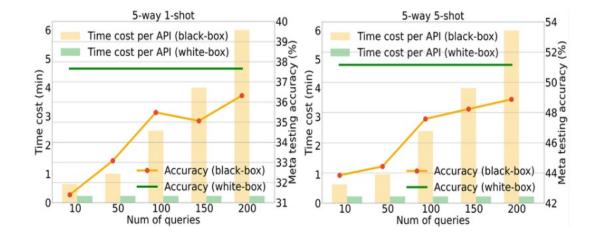


Figure 6. Effect of the number of query times on the accuracy and time cost. Here, white-box DFML provides unfair bounds of accuracy and time cost.

Learning to Learn from APIs: Black-Box Data-Free Meta-Learning

Zixuan Hu¹, Li Shen², Zhenyi Wang³, Baoyuan Wu⁴, Chun Yuan¹, Dacheng Tao⁵

1Tsinghua Shenzhen International Graduate School, China; 2 JD Explore Academy, China; 3 State University of New York at Buffalo, USA;

4 the Chinese University of Hong Kong, Shenzhen, China; 5 the University of Sydney, Australia

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

