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» Let X be the set of features, ) be the set of consequences and A())
be the set of distributions over ).

» The goal is to find a map p: X — A(Y) by observing data sampled
from real patients.

Privacy concerns:
» The feature X only weakly impacts label ). Therefore, the features
are much less sensitive than the true labels.
» We consider label differential privacy by adding noise only to labels
while reveal feature explicitly.
Goal: Design a noisy process that prevent inferring the true labels while
still learning the underlying true mapping p.
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Problem Setup

> Let 7 C A(Y)? be a set of hypothesis that models the underlying
truth, i.e., we assume the true map p € F.

» Let P be a set of random processes over X7 that models the feature
generating process.

We consider the online learning scenario that happens as follows:

1. At beginning Nature selects p € F and p € P.

2. At time step t, Nature generates x; ~ 1 and reveal it to a predictor.
3. The predictor predicts p; € A(Y) based on history observe thus far.
4

. Nature generates y; ~ p(x;) and reveals y, = K,,(y;) to predictor,
where [C,, is a noisy kernel (channel).

Goal: Find a prediction rule p7 that minimizes the expected KL-risk:

T

PYFP) = sup E|Y KL(p(xe), pe(x', 7 71))
pneP,peF —1



Related Work

» Our setup can be understood as an extension for the randomized
response scenario of (Warner, 1965) by allowing features to influence
outcome distributions.

» Label differential privacy was studied in (Chaudhuri & Hsu, 2011;
Esfandiari et al., 2022; Ghazi et al., 2021; Wu et al., 2023). But only
for the classification problems.

» Learning conditional distributions was studied in the context of
sequential probability assignment in (Yang & Barron, 1998;
Cesa-Bianchi & Lugosi, 2006; Rakhlin & Sridharan, 2015; Bilodeau et
al., 2020; Wu et al., 2022b; Bhatt & Kim, 2021; Bilodeau et al.,
2021). But considers only the regret formulation.



Main Results

Let Y be a finite set of size M, and K, be a random mapping such that
forally £y €y
PrlC,(y) =yl =1-n,

and

Theorem 1: Let F be any finite class and the features are generated
adversarially. Then for the noisy kernel IC,,, we have

L) <0 <log(l\/lT)\/Tlog |]—'|) .

Mn

M—-1

Moreover, for any k < T, there exists class F with |F| = 2K such that

PU(F,P) = (/T log [7)).



Main Results

Let G be a set of functions map X* — A()). We say G stochastic
sequential covers F w.r.t. P at confidence § and scale o, if

V€ P, Proro, [3p € FVg € Gt € [T], TV(p(x:),g(x")) > ] < 4.

Theorem 2: Let F and P be arbitrary classes and G, be the stochastic
sequential cover of F w.r.t. P at scale a and confidence § = ﬁ Then
for the noisy kernel C,;, we have

Mn

: 2
#L(}_’ P) < 0 (log(MT)\/Tlnfa>O{Mo¢ T/77+logga}> .

M—1



Example

Let H C [N]? be a class of functions that classifies X' into N categories.

The Hidden Classification Model F w.r.t. H is defined as

F={pha(x) = ane : h€ H,a={q1, -+ ,an} € A}

Theorem 3 Let H C [N]* be any class with Pseudo-dimension Pdim (%)
and P be the class of all i.i.d. processes. If F is the hidden classification
model w.r.t. H. Then for the noisy kernel k), we have

XY (F,P) < O(/T(Pdim(H) + NM)).

Moreover, there exists class H such that

AL (F,P) > (/T max{Pdim(H), NM}).



Thanks!
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