Learning Functional Distributions with Private Labels

Changlong Wu (CSol, Purdue University)

Joint with

Yifan Wang, Ananth Grama and Wojciech Szpankowski (CSol, Purdue University)

ICML2023, Honolulu, Hawaii

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

Let X be the set of features, Y be the set of consequences and Δ(Y) be the set of distributions over Y.

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

- Let X be the set of features, Y be the set of consequences and Δ(Y) be the set of distributions over Y.
- ▶ The goal is to find a map $p : X \to \Delta(Y)$ by observing data sampled from real patients.

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

- Let X be the set of features, Y be the set of consequences and Δ(Y) be the set of distributions over Y.
- ▶ The goal is to find a map $p : X \to \Delta(Y)$ by observing data sampled from real patients.

Privacy concerns:

► The feature X only weakly impacts label Y. Therefore, the features are much *less sensitive* than the true labels.

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

- Let X be the set of features, Y be the set of consequences and Δ(Y) be the set of distributions over Y.
- ▶ The goal is to find a map $p : X \to \Delta(Y)$ by observing data sampled from real patients.

Privacy concerns:

- ► The feature X only weakly impacts label Y. Therefore, the features are much *less sensitive* than the true labels.
- We consider label differential privacy by adding noise only to labels while reveal feature explicitly.

Consider how *clinical features* (e.g., age, gender) impact the probability of manifesting various *consequences* after catching a disease.

Rate compared to 18-29 years old ¹	0-4 years old	5-17 years old	18-29 years old	30-39 years old	40-49 years old	50-64 years old	65-74 years old	75-84 years old	85+ years old
Hospitalization ³	0.7x	0.2x	Reference group	1.5x	1.8x	3.1x	5.0x	9.3x	15x

- Let X be the set of features, Y be the set of consequences and Δ(Y) be the set of distributions over Y.
- ▶ The goal is to find a map $p : X \to \Delta(Y)$ by observing data sampled from real patients.

Privacy concerns:

- ► The feature X only weakly impacts label Y. Therefore, the features are much *less sensitive* than the true labels.
- We consider label differential privacy by adding noise only to labels while reveal feature explicitly.

Goal: Design a noisy process that prevent inferring the true labels while still learning the underlying true mapping p.

• Let $\mathcal{F} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a set of *hypothesis* that models the underlying truth, i.e., we assume the true map $p \in \mathcal{F}$.

- Let $\mathcal{F} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a set of *hypothesis* that models the underlying truth, i.e., we assume the true map $p \in \mathcal{F}$.
- Let P be a set of random processes over X^T that models the feature generating process.

- Let $\mathcal{F} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a set of *hypothesis* that models the underlying truth, i.e., we assume the true map $p \in \mathcal{F}$.
- Let P be a set of random processes over X^T that models the feature generating process.

We consider the online learning scenario that happens as follows:

- 1. At beginning *Nature* selects $p \in \mathcal{F}$ and $\mu \in \mathsf{P}$.
- 2. At time step t, Nature generates $\mathbf{x}_t \sim \mu$ and reveal it to a *predictor*.
- 3. The predictor predicts $\hat{p}_t \in \Delta(\mathcal{Y})$ based on history observe thus far.
- 4. Nature generates $y_t \sim p(\mathbf{x}_t)$ and reveals $\tilde{y}_t = \mathcal{K}_{\eta}(y_t)$ to predictor, where \mathcal{K}_{η} is a *noisy kernel* (channel).

- Let $\mathcal{F} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a set of *hypothesis* that models the underlying truth, i.e., we assume the true map $p \in \mathcal{F}$.
- Let P be a set of random processes over X^T that models the feature generating process.

We consider the online learning scenario that happens as follows:

- 1. At beginning *Nature* selects $p \in \mathcal{F}$ and $\mu \in \mathsf{P}$.
- 2. At time step t, Nature generates $\mathbf{x}_t \sim \mu$ and reveal it to a *predictor*.
- 3. The predictor predicts $\hat{p}_t \in \Delta(\mathcal{Y})$ based on history observe thus far.
- 4. Nature generates $y_t \sim p(\mathbf{x}_t)$ and reveals $\tilde{y}_t = \mathcal{K}_{\eta}(y_t)$ to predictor, where \mathcal{K}_{η} is a *noisy kernel* (channel).

Goal: Find a prediction rule \hat{p}^{T} that minimizes the expected KL-risk:

$$r_{T}^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) = \sup_{\mu \in \mathsf{P}, p \in \mathcal{F}} \mathbb{E} \left[\sum_{t=1}^{T} \mathsf{KL}(p(\mathbf{x}_{t}), \hat{p}_{t}(\mathbf{x}^{t}, \tilde{y}^{t-1})) \right].$$

Related Work

- Our setup can be understood as an extension for the *randomized response* scenario of (Warner, 1965) by allowing features to influence outcome distributions.
- Label differential privacy was studied in (Chaudhuri & Hsu, 2011; Esfandiari et al., 2022; Ghazi et al., 2021; Wu et al., 2023). But only for the classification problems.
- Learning conditional distributions was studied in the context of sequential probability assignment in (Yang & Barron, 1998; Cesa-Bianchi & Lugosi, 2006; Rakhlin & Sridharan, 2015; Bilodeau et al., 2020; Wu et al., 2022b; Bhatt & Kim, 2021; Bilodeau et al., 2021). But considers only the regret formulation.

Main Results

Let $\mathcal Y$ be a finite set of size M, and $\mathcal K_\eta$ be a random mapping such that for all $y \neq y' \in \mathcal Y$

$$\Pr[\mathcal{K}_{\eta}(\mathbf{y}) = \mathbf{y}] = 1 - \eta,$$

and

$$\Pr[\mathcal{K}_{\eta}(\mathbf{y}) = \mathbf{y}'] = \frac{\eta}{M-1}.$$

Theorem 1: Let \mathcal{F} be any finite class and the features are generated adversarially. Then for the noisy kernel \mathcal{K}_{η} , we have

$$r_T^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) \le O\left(\frac{\log(MT)\sqrt{T\log|\mathcal{F}|}}{1-\frac{M\eta}{M-1}}\right)$$

Moreover, for any $k \leq T$, there exists class \mathcal{F} with $|\mathcal{F}| = 2^{K}$ such that

 $r_T^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) \ge \Omega(\sqrt{T \log |\mathcal{F}|}).$

Main Results

Let \mathcal{G} be a set of functions map $\mathcal{X}^* \to \Delta(\mathcal{Y})$. We say \mathcal{G} stochastic sequential covers \mathcal{F} w.r.t. P at confidence δ and scale α , if

$$\forall \mu \in \mathsf{P}, \ \mathsf{Pr}_{\mathbf{x}^{\mathsf{T}} \sim \mu} \left[\exists p \in \mathcal{F} \forall g \in \mathcal{G} \exists t \in [\mathsf{T}], \mathsf{TV}(p(\mathbf{x}_t), g(\mathbf{x}^t)) > \alpha \right] \leq \delta.$$

Theorem 2: Let \mathcal{F} and P be arbitrary classes and \mathcal{G}_{α} be the stochastic sequential cover of \mathcal{F} w.r.t. P at scale α and confidence $\delta = \frac{1}{TM}$. Then for the noisy kernel \mathcal{K}_{η} , we have

$$r_{T}^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) \leq O\left(\frac{\log(MT)\sqrt{\operatorname{Tinf}_{\alpha\geq 0}\{M\alpha^{2}T/\eta + \log|\mathcal{G}_{\alpha}|\}}}{1 - \frac{M\eta}{M-1}}\right)$$

Example

Let $\mathcal{H} \subset [N]^{\mathcal{X}}$ be a class of functions that classifies \mathcal{X} into N categories.

The Hidden Classification Model \mathcal{F} w.r.t. \mathcal{H} is defined as

$$\mathcal{F} = \left\{ p_{h,\mathbf{q}}(\mathbf{x}) = q_{h(\mathbf{x})} : h \in \mathcal{H}, \mathbf{q} = \left\{ q_1, \cdots, q_N \right\} \in \Delta(\mathcal{Y})^M \right\}.$$

Theorem 3 Let $\mathcal{H} \subset [N]^{\mathcal{X}}$ be any class with Pseudo-dimension $\mathsf{Pdim}(\mathcal{H})$ and P be the class of all *i.i.d.* **processes**. If \mathcal{F} is the *hidden classification model* w.r.t. \mathcal{H} . Then for the noisy kernel \mathcal{K}_{η} , we have

$$r_T^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) \leq \tilde{O}(\sqrt{\mathcal{T}(\mathsf{Pdim}(\mathcal{H}) + \mathit{NM})}).$$

Moreover, there exists class $\mathcal H$ such that

$$r_{T}^{\mathsf{KL}}(\mathcal{F},\mathsf{P}) \geq \Omega(\sqrt{T\max\{\mathsf{Pdim}(\mathcal{H}),\mathit{NM}\}}).$$

Thanks!