

Controlled Differential Equations on Long Sequences via Non-standard Wavelets

Sourav Pal

Zhanpeng Zeng

Sathya N. Ravi

Vikas Singh

120

N×

Positional

Encoding

J

100

Neural Ordinary Differential Equations

Ri

Neural Laplace: Learning diverse classes of differential equations in the Laplace domain

Samuel Holt¹ Zhaozhi Qian¹ Mihaela van der Schaar¹

Neural Ordinary Differential Equation (NODE)

Neural Controlled Differential Equations for Irregular Time Series

Neural Rough Differential Equations for Long Time Series

James Morrill¹² Cristopher Salvi¹² Patrick Kidger¹² James Foster¹² Terry Lyons¹²

Neural Controlled Differential Equation (NCDE)

Multi-resolution Analysis

Kernel: a(t, s)

$$\alpha_{km}^{l} = \iint \psi_{k}^{l}(t)a(t,s)\psi_{m}^{l}(s)dtds$$
$$\beta_{km}^{l} = \iint \psi_{k}^{l}(t)a(t,s)\phi_{m}^{l}(s)dtds$$
$$\gamma_{km}^{l} = \iint \phi_{k}^{l}(t)a(t,s)\psi_{m}^{l}(s)dtds$$
$$A_{km}^{l} = \iint \phi_{k}^{l}(t)a(t,s)\phi_{m}^{l}(s)dtds$$

Forward Wavelet Transform:

Inverse Wavelet Transform:

 $\mathcal{W}^{T}A^{l}\mathcal{W} = \begin{bmatrix} \alpha^{l+1} & \beta^{l+1} \\ \gamma^{l+1} & A^{l+1} \end{bmatrix}$ $A^{l} = \mathcal{W} \begin{bmatrix} \alpha^{l+1} & \beta^{l+1} \\ \gamma^{l+1} & A^{l+1} \end{bmatrix} \mathcal{W}^{T}$

Calderon-Zygmund Operator

FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS I.

G. Beylkin^{1,2}, R. Coifman², V. Rokhlin³

Yale University New Haven, Connecticut 06520

Kernel: a(t, s) $|a(t,s)| \leq \frac{1}{|t-s|}$ $\left|\partial_t^M a(t,s)\right| + \left|\partial_s^M a(t,s)\right| \le \frac{C_0}{|t-s|^{1+M}}$ $|\alpha_{km}^{l}| + |\beta_{km}^{l}| + |\gamma_{km}^{l}| \le \frac{C_{M}}{1 + |k - m|^{1 + M}}$

Fast Matrix-Vector Product

$$u^{l} = A^{l}v^{l} = \mathscr{W}\left(\begin{bmatrix}\alpha^{l+1} & \beta^{l+1}\\ \gamma^{l+1} & 0\end{bmatrix}\begin{bmatrix}d^{l+1}\\ v^{l+1}\end{bmatrix} + \begin{bmatrix}0\\ u^{l+1}\end{bmatrix}\right)$$
 Recursion!!

Partially Unshared Convolution (PUC)

BCR-DE

How does **BCR-DE** compare to NCDE and NRDE on standard benchmarks?

Does BCR-DE provide an efficient sequence to sequence model for long sequences?

How does **BCR-DE** compare to NCDE and NRDE on standard benchmarks?

Does BCR-DE provide an efficient sequence to sequence model for long sequences?

Physiological Measurements (Regression)

Model		RMSE				Time (hrs)		
	RR	HR	SpO_2	RR	HR	SpO_2		
ODE-RNN (s512)	1.66 ± 0.06	6.75 ± 0.9	1.98 ± 0.31	0.0	0.1	0.1		
NCDE (s1)	2.79 ± 0.04	9.82 ± 0.34	2.83 ± 0.27	23.8	22.1	28.1		
NCDE (s512)	2.53 ± 0.03	12.22 ± 0.11	2.98 ± 0.04	0.1	0.0	0.1		
NRDE (d3s8)	2.42 ± 0.19	7.67 ± 0.40	2.55 ± 0.13	2.9	3.2	3.1		
NRDE (d3s128)	$\textbf{1.51} \pm \textbf{0.08}$	$\textbf{2.97} \pm \textbf{0.45}$	1.37 ± 0.22	0.5	1.7	1.7		
NRDE (d3s512)	$\textbf{1.49} \pm \textbf{0.08}$	3.46 ± 0.13	$\textbf{1.29} \pm \textbf{0.15}$	0.3	0.4	0.4		
BCR-DE	1.53 ± 0.09	3.27 ± 0.16	$\textbf{1.18} \pm \textbf{0.15}$	0.4	0.5	0.9		

Sequence Length: 4000

Dataset: BIDMC32

5-Class Classification

Model	Accuracy (%)	Time (hrs)
ODE-RNN (s128)	47.9 ± 5.3	0.01
NCDE (s4)	66.7 ± 11.8	5.5
NCDE (s128)	48.7 ± 2.6	0.1
NRDE (d2s4)	$\textbf{83.8} \pm \textbf{3.0}$	2.4
NRDE (d3s128)	68.4 ± 8.2	0.1
BCR-DE	77.8 ± 1.2	0.01
BCR-DE (Noise)	78.7 ± 2.4	0.01

Sequence Length: 17000

Dataset: Eigenworms

How does BCR-DE compare to NCDE and NRDE on standard benchmarks?

Does BCR-DE provide an efficient sequence to sequence model for long sequences?

Auto-encoding (Medium Length sequence)

Task	Dataset	NCDE		NRDE		BCR-DE	
		MSE	Time (hrs)	MSE	Time (hrs)	MSE	Time (hrs)
AE	PPG ECG	6.05e-5 6.06e-5	3.63 3.03	0.014 0.014	0.67 0.57	0.012 0.024	0.2 0.19
DAE	PPG ECG	0.008 0.008	4.1 3.04	0.023 0.023	0.92 0.73	0.009 0.02	0.18 0.18
MAE	PPG ECG	0.28 0.29	2.23 1.5	0.106 0.106	5.47 3.76	0.024 0.097	0.22 0.23

Sequence Length: 4000 Dataset: BIDMC32

How does BCR-DE compare to NCDE and NRDE on standard benchmarks?

Does BCR-DE provide an efficient sequence to sequence model for long sequences?

Coupled Differential Equations

Setting (Seq Len)	NCDE		NRDE		BCR_DE	
	MSE	Time (hrs)	MSE	Time (hrs)	MSE	Time (hrs)
Toy Coupled DE (4k)	1e-4	0.62	6e-5	0.02	3e-4	0.009
Lotka-Volterra (4k)	377.9	43.74	365.4	3.04	0.19	0.134
Van der Pol (10k)	0.023	43.6	0.94	7.43	1e-3	0.34
Chaotic Lorenz (10k)	66.15	42.9	133.3	3.7	0.05	0.35
Hodgkin-Huxley (20k)	0.02	45.35	1.24	4.28	4e-4	0.35
Benzene Conc. (240)	250.3	3.64	725.4	1.17	212.9	0.046

True

BCR-DE

NCDE

Conclusion

BCR-DE to model controlled differential equations via **integral transform** (operator) and Multi-Resolution Analysis (MRA)

Efficient strategy to model **long** but *fixed* length sequences, by **unrolling** the dynamics

Best when number of levels of decomposition is large leading to **small** but effective coarse representation of the signal.

Efficient way to handle coupled differential equations

Thank you

Poster Session:

Exhibit Hall 1 #307 Wed 26 Jul 2 p.m. HST — 3:30 p.m. HST

https://github.com/sourav-roni/BCR-DE

spal9@wisc.edu