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Background: Adversarial Example

4

 Adversarial examples are generated by adding imperceptible perturbations to the input but
may mislead the model to make unexpected predictions

How to solve this problem of so-called adversarial examples?



Background: Adversarial Robustness

5

 Three types of advanced techniques to improve the robustness of models

 Adversarial training introduces adversarial data into training to improve the robustness of models but

suffers from significant performance degradation and high computational complexity

 Adversarial purification relies on generative models to purify adversarial data before classification,

which still has to compromise on unsatisfactory natural and adversarial accuracy

 Adversarial detection aims to tell whether a test sample is an adversarial one, for which the key is to

find the discrepancy between the adversarial and natural distributions

Existing adversarial detection approaches primarily train a tailored detector for specific attacks (Ma et al., 2018; Lee
et al., 2018) or for a specific classifier (Deng et al., 2021), which largely overlook modeling the adversarial and
natural distributions, limiting their performance against unseen attacks or transferable attacks

Ma et al., Characterizing adversarial subspaces using local intrinsic dimensionality. ICLR 2018.
Lee et al., A simple unified framework for detecting out-of-distribution samples and adversarial attacks. NeurIPS 2018. 
Deng et al., A practical bayesian approach to adversarial detection. CVPR 2021. 



Motivation

6

 Intuition from score function ∇𝐱𝐱log 𝑝𝑝 𝐱𝐱

 Score ∇𝐱𝐱log 𝑝𝑝 𝐱𝐱  represents the momentum of the sample

towards high density areas of natural data (Song et al., 2019)

 A lower score norm indicates the sample is closer to the high-

density areas of natural data

 One score is useful but not effective enough

 Following a diffusion process, most natural samples have lower score norms than adversarial samples at the

same timestep, but they are very sensitive to the timesteps due to the significant overlap across all timesteps

Song et al., Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019. 



Contents

Background01

Expected Perturbation Score for Adversarial Detection

Conclusion

02

04

Experimental Results03

 Expected Perturbation Score (EPS)

 Exploring EPS for Adversarial Detection



Adversarial Detection with Expected Perturbation Score 

8

 Computing expected perturbation score (EPS) using a pre-trained score model

 Adversarial detection with EPS (EPS-AD)

 Add perturbations to a set of natural images and a test image following a diffusion process with time step 

𝑇𝑇∗ and obtain their EPSs via the score model 

 Compute the maximum mean discrepancy (MMD) between the test sample and natural samples with EPS 



Expected Perturbation Score (EPS)

9

Definition 1 (Expected Perturbation Score )

 Let 𝒳𝒳 ⊂ ℝ𝑑𝑑 be a separable metric space and 𝑝𝑝 be Borel probability measure on 𝒳𝒳. Given a perturbation
process transition distribution 𝑝𝑝0𝑡𝑡(𝐱𝐱𝑡𝑡 ∣ 𝐱𝐱0) the expected perturbation score (EPS) of a sample 𝐱𝐱~𝑝𝑝 is:

𝑆𝑆 𝐱𝐱 = 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇 ∇𝐱𝐱log𝑝𝑝𝑡𝑡 𝐱𝐱

where 𝑝𝑝𝑡𝑡 𝐱𝐱 is the marginal probability distribution of 𝐱𝐱𝑡𝑡 with 𝑝𝑝0 𝐱𝐱 ≔ 𝑝𝑝(𝐱𝐱)

 The perturbation transition distribution 𝑝𝑝0𝑡𝑡(𝐱𝐱𝑡𝑡 ∣ 𝐱𝐱0) can be any distribution, e.g., Gaussian distribution

 𝑆𝑆 𝐱𝐱 incorporates multiple levels of noises instead of a single one at different timesteps

 Estimation for EPS with a score model: 𝑆𝑆 𝐱𝐱 = 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇  𝑠𝑠𝜃𝜃(𝐱𝐱𝑡𝑡, 𝑡𝑡) ≈ 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇  ∇𝐱𝐱log𝑝𝑝𝑡𝑡 𝐱𝐱

Song et al., Score-based generative modeling through stochastic differential equations. ICLR 2021. 



Expected Perturbation Score (EPS)
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 Theorem 1 Assuming that the distribution of natural data 𝑝𝑝 𝐱𝐱 ∼ 𝒩𝒩 𝛍𝛍𝐱𝐱 ,𝜎𝜎𝐱𝐱2𝐈𝐈 , where 𝐈𝐈 is an identity 
matrix, given a perturbation transition kernel 𝑝𝑝0𝑡𝑡 𝐱𝐱𝑡𝑡 𝐱𝐱0 = 𝒩𝒩 𝛾𝛾t𝐱𝐱0,𝜎𝜎𝑡𝑡2𝐈𝐈 with 𝛾𝛾t and 𝜎𝜎tbeing the time-
dependent noise schedule, then the following three conclusions for 𝑆𝑆 𝐱𝐱 = 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇 ∇𝐱𝐱log𝑝𝑝𝑡𝑡 𝐱𝐱  hold:

where 𝛍𝛍𝑺𝑺 = 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇 𝛍𝛍𝑡𝑡 with 𝛍𝛍𝑡𝑡 = 𝜺𝜺
𝛾𝛾𝒕𝒕2𝜎𝜎𝐱𝐱2+𝜎𝜎𝑡𝑡2

and 𝜎𝜎𝑆𝑆2 = 𝔼𝔼𝑡𝑡~𝑈𝑈 0,𝑇𝑇 𝜁𝜁𝑡𝑡2 with 𝜁𝜁𝑡𝑡2 = 𝟏𝟏
𝛾𝛾𝒕𝒕2𝜎𝜎𝐱𝐱2+𝜎𝜎𝑡𝑡2

 For ∀ 𝐱𝐱~𝑝𝑝 𝐱𝐱 , 𝑆𝑆 𝐱𝐱 ~𝒩𝒩 𝟎𝟎,𝜎𝜎𝑆𝑆2𝐈𝐈
 For ∀ 𝐲𝐲~𝑝𝑝 𝐱𝐱 and adversarial sample �𝐲𝐲 = 𝐲𝐲 + 𝜺𝜺, 𝑆𝑆 �𝐲𝐲 ∼ 𝒩𝒩 −𝛍𝛍𝑺𝑺 ,𝜎𝜎𝑆𝑆2𝐈𝐈
 For ∀ 𝐱𝐱,𝐲𝐲~𝑝𝑝 𝐱𝐱 and adversarial sample �𝐲𝐲 = 𝐲𝐲 + 𝜺𝜺, 

𝑆𝑆 𝐱𝐱 − 𝑆𝑆 𝒚𝒚 ~𝒩𝒩 𝟎𝟎, 2𝜎𝜎𝑆𝑆2𝐈𝐈 , 𝑆𝑆 𝐱𝐱 − 𝑆𝑆 �𝐲𝐲 ~𝒩𝒩 𝛍𝛍𝑺𝑺, 2𝜎𝜎𝑆𝑆2𝐈𝐈

 Discrepancy between the adversarial sample and the natural sample is obvious due to the term 𝛍𝛍𝑺𝑺

 Why consider multiple scores in EPS? 

One score of some unique timestep 𝑡𝑡 is difficult to find a good solution:

smaller variance 𝜎𝜎𝑆𝑆2 and larger mean 𝛍𝛍𝑺𝑺 2 are required for good

adversarial detection, but they decrease as the timestep 𝑡𝑡 increases

Taking expectation on multiple scores

makes the discrepancy more stable



Exploring EPS for Adversarial Detection
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 Corollary 1 Considering the Gaussian kernel 𝑘𝑘 𝐚𝐚,𝐛𝐛 = exp − ⁄𝐚𝐚 − 𝐛𝐛 2 2𝜎𝜎2 and the assumption 
in Theorem 1, for ∀ 0 < 𝜂𝜂 < 1, the probability of 𝑃𝑃 𝑘𝑘 𝑆𝑆 𝐱𝐱 , 𝑆𝑆 �𝐲𝐲 > 𝜂𝜂 is given by :

where 𝑧𝑧 = 𝛍𝛍𝑺𝑺 2with 𝛍𝛍𝑡𝑡 being the mean of 𝑆𝑆 𝐱𝐱 − 𝑆𝑆 𝒚𝒚 , 𝐶𝐶 is a constant for given 𝜂𝜂 and 𝜎𝜎

Nature samples ℙ𝑋𝑋 = 𝐱𝐱 𝑖𝑖
𝑖𝑖=1
𝑛𝑛

A test sample ℚ𝑌𝑌 = �𝐱𝐱

�𝐌𝐌𝐌𝐌𝐌𝐌2[ℙ𝑋𝑋,ℚ𝑌𝑌;ℋ𝑘𝑘] =
1
𝑛𝑛2

�
𝑖𝑖,𝑗𝑗=1

𝑛𝑛

𝑘𝑘 𝑆𝑆 𝐱𝐱 𝑖𝑖 , 𝑆𝑆 𝐱𝐱 𝑗𝑗 −
2
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑘𝑘 𝑆𝑆(𝐱𝐱 𝑖𝑖 ), 𝑆𝑆 𝐲𝐲 + 𝑘𝑘 𝑆𝑆 𝐲𝐲 , 𝑆𝑆 𝐲𝐲

𝑃𝑃 𝑘𝑘 𝑆𝑆 𝐱𝐱 , 𝑆𝑆 �𝐲𝐲 > 𝜂𝜂 = �
0

𝐶𝐶
𝜒𝜒𝑑𝑑2 𝑧𝑧 𝑑𝑑𝑧𝑧

Smaller 𝛍𝛍𝑺𝑺 2 leads to larger
𝑘𝑘 𝑆𝑆 𝐱𝐱 , 𝑆𝑆 �𝐲𝐲 given an 𝜂𝜂

MMD between EPSs of the natural samples is smaller
than that between natural and adversarial samples
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Detecting Known Attacks 

13

 EPS-AD achieves the best detection performance over CIFAR-10 in terms of AUROC



Detecting Known Attacks 

14

 EPS-AD consistently achieves the best detection performance over ImageNet, especially for low 𝜖𝜖



Detecting Unseen and Transferable Attacks
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 Unseen attacks on CIFAR-10: several baselines (e.g., MD and LID) worsens, while diffusion-based
methods keep superior performance since they focus more on modeling natural distribution

 Transferable attacks on ImageNet: non-diffusion-based methods drop performance significantly, while 
our EPS-AD achieves significantly better transferability since it does not rely on specific classifiers



Ablation Study on Impact of Timestep

16

 Our EPS-AD and EPS-N are not sensitive to the total timestep 𝑇𝑇 while S-N fluctuates greatly with the timestep t

 As the total timestep 𝑇𝑇 increases, our EPS-AD and EPS-N exhibit progressively better performance, however,

this gain gradually decreases when T exceeds the optimal value

a. CIFAR-10 b. ImageNet
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Conclusion

18

 A novel statistic EPS. We find that the traditional score of one sample is sensitive in identifying

adversarial samples due to insufficient information from a single sample only. To address this, we

propose EPS by perturbing the sample with various noises

 A novel adversarial detection method EPS-AD. Based on EPS, we develop a novel single-sample

adversarial detection method called EPS-AD relying on Maximum Mean Discrepancy

 Theoretical justifications. We theoretically analyze that the EPS of the natural sample is closer to

those of other natural samples compared to adversarial samples under mild conditions and the EPS-

based MMD between natural and adversarial samples is larger than that among natural samples

Code is available at https://github.com/ZSHsh98/EPS-AD.git 



Thank you for your attention!
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