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Motivation & Background

@

In RL & IL, the agent’s policy induces a state distribution d(s) and state-action distribution p,(s,a) =
n(als) - dn(s)

They are of central importance, appearing all across the literature:

¢ The Policy Gradient Theorem: A fundamental theorem from which all policy-based methods are derived. [Sutton et
al., 2000]

& All distribution matching approaches in imitation learning [Ke et al. 2020]

¢ Other: Curiosity based exploration [Pathak et al. 2017]; Constrained RL [Qin et al. 2021]; Batch “offline” RL
[Fuyimoto et al. 2019]; Convex RL [Mutti et al. 2022]

Despite their importance, d(s) and p, (s, a) are mostly discussed indirectly and theoretically, rather than
being modeled explicitly.

& This work concentrates on modeling them explicitly with normalizing flows, focusing on imitation learning.
Imitation learning

& Simple approach: Behavioral cloning (BC)

¢ Distribution matching: min D (pr||Pexp)

¢ Hinges on the one-to-one relationship between a and p,;. Has shown significant improvement over BC, particularly when
few expert trajectories are available or expert trajectories are subsampled.
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¢ Thus, given an estimate of the ratio, any RL algorithm can be used for solving the IL objective.

& Naive approach: Train two flows independently
& Practically, this means alternating between learning them and using their logratio as reward
& Fails: Overall normalized score of 0.158
& BC graph
& Intuitively, no upward trend implies failure in RL

¢ Formalized in the paper

¢ Problem of OOD: Flows values are meaningless when evaluated on each others data



Our Approach

& To couple them, we employ the Donsker-Varadhan form of the
130 %

o Dii(@ullPexp) = 5P Ep (sa) [x(s,a)] —10g Ep,(sa) [e¥]
X:SXA—R

¢ Optimality point: x* = log —|— C
¢ Precisely the negative log dlstrlbution ratio!
¢ Can compute x through the DV and use —x as reward in an RL algorithm
& Setxy¢(s,a) = logpy(s,a) —logqe(s,a)

¢ Guarantees more meaningful values when the flows are evaluated on each
others data

& Note the drop at the end occurs precisely beyond expert level
¢ Additional components:
¢ Squasher
¢ Flow regularization

¢ Smoothing
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Algorithm 1 CFIL

Input: Expert demos R = {(s., )}/ ,; parameterized
flow pair py;, g4; off-policy RL algorithm A; density update
rate k; squashing function o; regularization and smoothing
coefficients a, [
Define: .
: for timestep t = D 1
Take a step in A with reward r = —a, 4, while
filling agent buffer R 4 and potentially ng the
policy and value networks according to A’s settings.
ift mod k = 0 then
Sample expert and agent batches:
{ )L, ~ Re and {(st,a")}L, ~Ra

(s,a) += 8- (s,a) ®u,
end if
Compute loss:

11: if flow lev then

12: C ompute reﬂulduz..i‘[l n loss:

13: L= ,‘I Sl 1 log qys(si,al) + log py(st, a’)
14: T=T+al

15: end if

16: Update ¢ < 10 — V4T

17: Update ¢ < ¢ — VT

18:  endif

19: end for
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Experiments

1. Standard Mujoco benchmarks, comparing with SOTA on a single expert trajectory.

2. Plot means and standard deviations across 5 random seeds. '-—_:,-‘—_-=
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Ablation

& Left: We put into question the need for our squasher, our coupling and our inductive bias
& Right: We vary CFIL’s smoothing and regularization coefficients to test its sensitivity

Each point and value summarizes 25 seeds (5 per environment).

Std
* 008 ® 016 ® 024 @ 032
Avg
-10

EXPERT 1
CFIL 1.012

NOSQUASH —0.091

REGULARNET 0.196 | 0.190
INDFLOW 0.158 | 0.127
INDFLOWNS 0.090 | 0.072
NUMERATOR —0.051 | —0.001 00 02 04 06 o8

Smoothing coefficient §

Regularization coefficient a

All the alternatives fail, Shows both the utility of the smoothing and
demonstrating the necessity of CFIL’s components regularization as well as CFIL’s robustness to them



Conclusion

& Presented CFIL: A unique approach to imitation learning.
& Outperforms SOTA in a variety of settings.
¢ Many novelties: estimator; smoothing & regularization; employment of flows; BC graphs.

¢ Future work could include coupled flows for general ratio estimation.

& QOverall, we pointed out the great potential—then demonstrated the utility—of explicitly
modeling the state and state-action distributions and aim to inspire more research
incorporating such models all across the reinforcement learning literature.
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