A Coupled Flow Approach to Imitation Learning

Gideon Freund, Elad Sarafian, Sarit Kraus

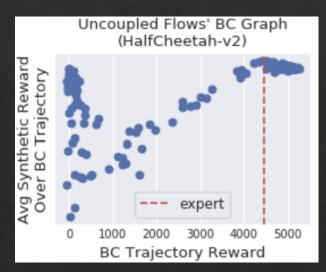
Bar-Ilan University

Motivation & Background

- \Rightarrow In RL & IL, the agent's policy induces a state distribution $d_{\pi}(s)$ and state-action distribution $p_{\pi}(s,a) = \pi(a|s) \cdot d_{\pi}(s)$
- ♦ They are of central importance, appearing all across the literature:
 - ♦ The Policy Gradient Theorem: A fundamental theorem from which all policy-based methods are derived. [Sutton et al., 2000]
 - ♦ All distribution matching approaches in imitation learning [Ke et al. 2020]
 - Other: Curiosity based exploration [Pathak et al. 2017]; Constrained RL [Qin et al. 2021]; Batch "offline" RL [Fujimoto et al. 2019]; Convex RL [Mutti et al. 2022]
- \diamond Despite their importance, $d_{\pi}(s)$ and $p_{\pi}(s,a)$ are mostly discussed indirectly and theoretically, rather than being modeled explicitly.
 - ♦ This work concentrates on modeling them explicitly with normalizing flows, focusing on imitation learning.
- Imitation learning
 - ♦ Simple approach: Behavioral cloning (BC)
 - \diamond Distribution matching: min $D_f(p_{\pi}||p_{exp})$
 - \diamond Hinges on the one-to-one relationship between a and p_{π} . Has shown significant improvement over BC, particularly when few expert trajectories are available or expert trajectories are subsampled.

Our Approach

- \Leftrightarrow Reverse KL: $argmin_{\pi} D_{KL}(p_{\pi}||p_e)$
- \Leftrightarrow This IL objective is: $argmax_{\pi}J\left(\pi,r=\log\frac{p_{e}}{p_{\pi}}\right)$

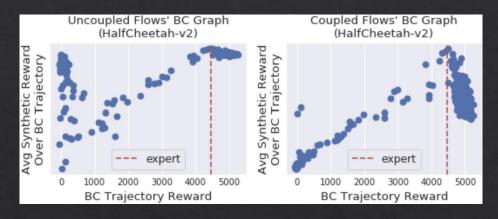


- ♦ Thus, given an estimate of the ratio, any RL algorithm can be used for solving the IL objective.
- ♦ Naïve approach: Train two flows independently
 - Practically, this means alternating between learning them and using their logratio as reward
 - ♦ Fails: Overall normalized score of 0.158
 - ♦ BC graph
 - ♦ Intuitively, no upward trend implies failure in RL
 - ♦ Formalized in the paper
 - ♦ Problem of OOD: Flows values are meaningless when evaluated on each others data
- They must be coupled!

Our Approach

- To couple them, we employ the Donsker-Varadhan form of the KL:

 - \Leftrightarrow Optimality point: $x^* = \log \frac{p_{\pi}}{p_e} + C$
 - Precisely the negative log distribution ratio!
 - ♦ Can compute x through the DV and use –x as reward in an RL algorithm
 - \Rightarrow Set $\overline{x_{\psi,\phi}(s,a)} = log p_{\psi}(s,a) log q_{\phi}(s,a)$
 - ♦ Guarantees more meaningful values when the flows are evaluated on each others data
 - Note the drop at the end occurs precisely beyond expert level
- Additional components:
 - ♦ Squasher
 - ♦ Flow regularization
 - ♦ Smoothing
- ♦ Coupled Flow Imitation Learning (CFIL)



Algorithm 1 CFIL

Input: Expert demos $\mathcal{R}_E = \{(s_e, a_e)\}_{t=1}^N$; parameterized flow pair p_{ψ}, q_{ϕ} ; off-policy RL algorithm \mathcal{A} ; density update rate k; squashing function σ ; regularization and smoothing coefficients α, β .

Define:
$$x_{\psi,\phi} = \sigma(\log p_{\psi} - \log q_{\phi})$$

- 1: **for** timestep t = 0, 1, ...,**do**
- 2: Take a step in \mathcal{A} with reward $r = -x_{\psi,\phi}$, while filling agent buffer \mathcal{R}_A and potentially updating the policy and value networks according to \mathcal{A} 's settings.
- 3: **if** $t \mod k = 0$ **then**
- : Sample expert and agent batches:

5:
$$\{(s_e^t, a_e^t)\}_{t=1}^M \sim \mathcal{R}_E \text{ and } \{(s^t, a^t)\}_{t=1}^M \sim \mathcal{R}_A$$

: if smooth then

$$(s,a) += \beta \cdot (s,a) \odot u, \ u \sim U(-\frac{1}{2},\frac{1}{2})^{dim((s,a))}$$

end if

8:

9: Compute loss:

10:
$$\mathcal{J} = \log \frac{1}{M} \sum_{i=1}^{M} e^{x(s_e^i, a_e^i)} - \frac{1}{M} \sum_{i=1}^{M} x(s^i, a^i)$$

11: **if** flow reg **then**

12: Compute regularization loss:

13:
$$\mathcal{L} = -\frac{1}{M} \sum_{i=1}^{M} \log q_{\phi}(s_e^i, a_e^i) + \log p_{\psi}(s^i, a^i)$$

14:
$$\mathcal{J} = \mathcal{J} + \alpha \mathcal{L}$$

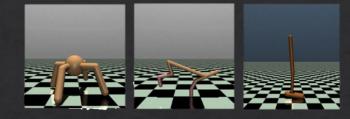
15: **end if**

16: Update
$$\psi \leftarrow \psi - \eta \nabla_{\psi} \mathcal{J}$$

17: Update
$$\phi \leftarrow \phi - \eta \nabla_{\phi} \mathcal{J}$$

18: **end if**

19: **end for**



Experiments

1. Standard Mujoco benchmarks, comparing with SOTA on a single expert trajectory.

2. Plot means and standard deviations across 5 random seeds.

Stah Folganded standard deviations across 5 random seeds.

Stah Folganded sittips riging

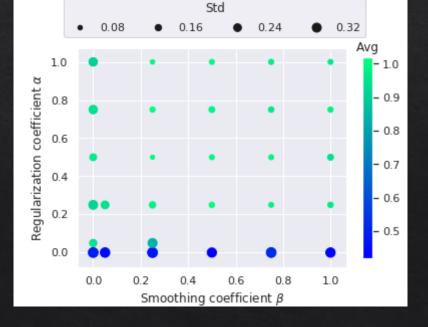
0.5: density update rate of 10 batches of 3. CFIL: RL=SAC; FLOW=MAF: $\sigma = 6 \tanh \left(\frac{x}{2}\right)$ 100, every 1000 timesteps HalfCheetah-v2 Hopper-v2 Humanoid-v2 Walker2d-v2 5000 5000 5000 6000 4000 3000 3000 5000 Env Return 3000 3000 4000 2000 2000 2000 3000 1000 2000 value dice 1000 2000 CFIL (ours) 1000 1000 1000 -1000-10001e5 1e5 1e5 1e5 Env int Env int Env int Env int

"We now turn to the state-only and subsampled regimes. Settings in which ValueDICE finds no dice:"

Ablation

- ♦ Left: We put into question the need for our squasher, our coupling and our inductive bias
- Right: We vary CFIL's smoothing and regularization coefficients to test its sensitivity
 Each point and value summarizes 25 seeds (5 per environment).

	SCORE
EXPERT	1
CFIL NOSQUASH REGULARNET INDFLOW INDFLOWNS NUMERATOR	$\begin{array}{c c} \textbf{1.012} \\ -0.091 \\ 0.196 \mid 0.190 \\ 0.158 \mid 0.127 \\ 0.090 \mid 0.072 \\ -0.051 \mid -0.001 \end{array}$



All the alternatives fail, demonstrating the necessity of CFIL's components

Shows both the utility of the smoothing and regularization as well as CFIL's robustness to them

Conclusion

- Presented CFIL: A unique approach to imitation learning.
 - Outperforms SOTA in a variety of settings.
 - ♦ Many novelties: estimator; smoothing & regularization; employment of flows; BC graphs.
 - ♦ Future work could include coupled flows for general ratio estimation.
- Overall, we pointed out the great potential—then demonstrated the utility—of explicitly modeling the state and state-action distributions and aim to inspire more research incorporating such models all across the reinforcement learning literature.

Mahalo