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Introduction Background

Deep Learning is in Hunger

Deep learning models are increasingly “hungry” for computing power.

“Compute Trends Across Three Aras of Machine Learning.” Sevilla et al., arXiv, 2022.
“Huge ’Foundation Models’ Are Turbo-charging AI Progress.” The Economist, Jun 11th, 2022.
“Scaling Laws for Neural Language Models.” Kaplan et al., arXiv, 2020.
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Introduction Background

Deep Learning is in Hunger

Question: How to aggregate computing power?

“Compute Trends Across Three Aras of Machine Learning.” Sevilla et al., arXiv, 2022.
“Huge ’Foundation Models’ Are Turbo-charging AI Progress.” The Economist, Jun 11th, 2022.
“Scaling Laws for Neural Language Models.” Kaplan et al., arXiv, 2020.
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Introduction Background

Aggregate Computing Power

Distributed training
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Introduction Background

Aggregate Computing Power

Distributed training

Question: Are there any limitations to server-based distributed training?
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Introduction Background

Limitations of Server-based Training

1 Communication bottleneck

As the number of workers increases, communication time gradually dominates total training time.

(Speaker: Tongtian Zhu) Equivalence of Decentralized SGD and SAM 7/ 57



Introduction Background

Limitations of Server-based Training

2 Privacy and security issues

Inverting averaged gradients on server can recover original image batches.

“See through Gradients: Image Batch Recovery via Gradient Inversion.” Yin et al., CVPR, 2021.
“Reconstructing Training Data from Model Gradient, Provably.” Wang et al., NeurIPS, 2022.
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Introduction Background

Limitations of Server-based Training

Distributed training

Question: Is it possible to mitigate these limitations simultaneously?
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Introduction Background

Limitations of Server-based Training

Distributed training

Server-based communication
?⇒ Peer-to-peer communication
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Introduction Background

Possible Solution: Decentralized Training
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Introduction Background

Possible Solution: Decentralized Training

Compared with centralized training, training in a fully decentralized fashion

avoids the requirements of a costly central server with heavy

communication burdens;

mitigates the risk of local information leakage;

support more flexible and dynamic participation of workers;

· · ·

“Swarm Learning for Decentralized and Confidential Clinical Machine Learning.” Warnat-Herresthal et al., Nature, 2021.
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Introduction Background

Notations

Server-based distributed training

Training objective: minw∈Rd
1
m

∑m
j=1 Ezj∼D̃j

[L(w ; zj)].

Server-based distributed training with centralized SGD (C-SGD):

wa(t+1) = wa(t) − η
1

m

m∑
j=1

·

gradient computation︷ ︸︸ ︷
∇Lµj (t)(wa(t))︸ ︷︷ ︸

average gradients on server

.

“Large Scale Distributed Deep Networks.” Dean et al., NeurIPS, 2012.
“Communication Efficient Distributed Machine Learning with the Parameter Server.” Li et al., NeurIPS, 2014.
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Introduction Background

Notations

Decentralized training

Training objective: minw∈Rd
1
m

∑m
j=1 Ezj∼D̃j

[L(w ; zj)].

Peer-to-peer distributed training with decentralized SGD (D-SGD):

wj (t+1) =

Communication︷ ︸︸ ︷
m∑
j=1

Pj,kwk (t)−η ·

gradient computation︷ ︸︸ ︷
∇Lµj (t)(wj (t)) ,

where matrix P characterizes the communication topology G.

“Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent.”
Lian et al., NeurIPS, 2017.
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Introduction Background

Communication Topology in D-SGD

Collaborations are flexible and dynamic.

Information is exchanged only among (trusted) neighbors.

“Topology-aware Generalization of Decentralized SGD.” Zhu et al., ICML, 2022.
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Introduction Background

Recap

Compared with centralized training, training in a fully decentralized fashion

avoids the requirements of a costly central server with heavy

communication burdens;

mitigates the risk of local information leakage;

support more flexible and dynamic participation of workers.

· · ·
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Introduction Motivation

Motivation

No free lunch? Are there trade-offs to the benefits of decentralization?

(Speaker: Tongtian Zhu) Equivalence of Decentralized SGD and SAM 17 / 57



Introduction Motivation

Motivation

No free lunch? Are there trade-offs to the benefits of decentralization?

Bad news: Despite the aforementioned merits, it is regrettable that the existing theories claim

decentralization to invariably undermines generalization.

Existing Generalization Bounds of D-SGD

Generalization error of D-SGD ≤ O(
1√

sample size
) + additional error from decentralization.

“Stability and Generalization of Decentralized Stochastic Gradient Descent.” Sun et al., AAAI, 2021.
“Topology-aware Generalization of Decentralized SGD.” Zhu et al., ICML, 2022.
“Stability-Based Generalization Analysis of the Asynchronous Decentralized SGD.” Deng et al., AAAI, 2023.
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!

D-SGD can outperform C-SGD in large-batch settings, achieving higher validation accuracy and smaller

validation-training accuracy gap, despite both being fine-tuned (Zhang et al., 2021).

“Loss Landscape Dependent Self-Adjusting Learning Rates in Decentralized Stochastic Gradient Descent..” Zhang et al., arXiv, 2021.
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!

A non-negligible consensus distance (i.e., a measure of discrepancy between workers) at middle phases of

decentralized training can improve generalization over centralized training (Kong et al., 2021).

“Consensus Control for Decentralized Deep Learning.” Kong et al., ICML, 2021.
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!

A non-negligible consensus distance (i.e., a measure of discrepancy between workers) at middle phases of

decentralized training can improve generalization over centralized training (Kong et al., 2021).

Takeaway: Global coherence is not always optimal.

“Consensus Control for Decentralized Deep Learning.” Kong et al., ICML, 2021.
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!

D-SGD can outperform C-SGD in large-batch settings, achieving higher validation accuracy and smaller

validation-training accuracy gap, despite both being fine-tuned (Zhang et al., 2021).

A non-negligible consensus distance (i.e., a measure of discrepancy between workers) at middle phases of

decentralized training can improve generalization over centralized training (Kong et al., 2021).

Non-negligible gap between theory and experiments exists!

“Loss Landscape Dependent Self-Adjusting Learning Rates in Decentralized Stochastic Gradient Descent..” Zhang et al., arXiv, 2021.
“Consensus Control for Decentralized Deep Learning.” Kong et al., ICML, 2021.
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Introduction Motivation

Motivation

Really? Some phenomena in decentralized deep learning are not well explained!

D-SGD can outperform C-SGD in large-batch settings, achieving higher validation accuracy and smaller

validation-training accuracy gap, despite both being fine-tuned (Zhang et al., 2021).

A non-negligible consensus distance (i.e., a measure of discrepancy between workers) at middle phases of

decentralized training can improve generalization over centralized training (Kong et al., 2021).

Non-negligible gap between theory and experiments exists!

Our Goal: Bridge the Gap

Thoroughly examine the unique, underexamined characteristics of decentralized training.

“Loss Landscape Dependent Self-Adjusting Learning Rates in Decentralized Stochastic Gradient Descent..” Zhang et al., arXiv, 2021.
“Consensus Control for Decentralized Deep Learning.” Kong et al., ICML, 2021.
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

Let us do some simple math!
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

Recall the iterate of D-SGD: wj (t+1) =

Communication︷ ︸︸ ︷
m∑
j=1

Pj,kwk (t)−η ·

gradient computation︷ ︸︸ ︷
∇Lµj (t)(wj (t)) .
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

Recall the iterate of D-SGD: wj (t+1) =

Communication︷ ︸︸ ︷
m∑
j=1

Pj,kwk (t)−η ·

gradient computation︷ ︸︸ ︷
∇Lµj (t)(wj (t)) .

What about its global average: wa(t+1) = wa(t) − η · 1

m

m∑
j=1

∇Lµj (t)(wj (t)).
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

Recall the iterate of D-SGD: wj (t+1) =

Communication︷ ︸︸ ︷
m∑
j=1

Pj,kwk (t)−η ·

gradient computation︷ ︸︸ ︷
∇Lµj (t)(wj (t)) .

What about its global average: wa(t+1) = wa(t) − η · 1

m

m∑
j=1

∇Lµj (t)(wj (t)).

Rearrange: wa(t+1) = wa(t) − η
[
∇Lµ(t)

wa(t)
+

1

m

m∑
j=1

(∇L
µj (t)

wj (t)
−∇L

µj (t)

wa(t)
)
]
.

(Speaker: Tongtian Zhu) Equivalence of Decentralized SGD and SAM 29 / 57



Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

We obtain: wa(t+1) = wa(t) − η
[ m∑

j=1

∇Lµ(t)

wa(t)

m∑
j=1︸ ︷︷ ︸

gradient at wa(t)

+
1

m

m∑
j=1

(∇L
µj (t)

wj (t)
−∇L

µj (t)

wa(t)
)

︸ ︷︷ ︸
gradient diversity among local workers

]
.
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Introduction Technical Route

From Gap to Solution: Our Journey

How to Bridge the Gap?

Understanding decentralization requires thinking its inductive bias.

We obtain: wa(t+1) = wa(t) − η
[ m∑

j=1

∇Lµ(t)

wa(t)

m∑
j=1︸ ︷︷ ︸

gradient at wa(t)

+
1

m

m∑
j=1

(∇L
µj (t)

wj (t)
−∇L

µj (t)

wa(t)
)

︸ ︷︷ ︸
gradient diversity among local workers

]
.

Lightbulb Moment

D-SGD iterate ⇒ SGD iterate + noise.
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Introduction Technical Route

From Gap to Solution: Our Journey

Question

What are the inductive bias of the unique noise?

We obtain: wa(t+1) = wa(t) − η∇Lµ(t)

wa(t)

m∑
j=1︸ ︷︷ ︸

SGD iterate

+η
1

m

m∑
j=1

(∇L
µj (t)

wj (t)
−∇L

µj (t)

wa(t)
)

︸ ︷︷ ︸
noise form decentralization

.
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Introduction Technical Route

From Gap to Solution: Our Journey

Question

What are the inductive bias of the unique noise?

We obtain: wa(t+1) = wa(t) − η∇Lµ(t)

wa(t)

m∑
j=1︸ ︷︷ ︸

SGD iterate

+η
1

m

m∑
j=1

(∇L
µj (t)

wj (t)
−∇L

µj (t)

wa(t)
)

︸ ︷︷ ︸
noise form decentralization

.

Inspired by Gu et al. (2023), which shows that local steps in local SGD inject extra noise and drive the iterate

to converge faster towards flatter minima, a natural question arises:

A Possible Direction

Would the noise from decentralization induces flatness bias?

“Why (and When) does Local SGD Generalize Better than SGD?.” Gu et al., ICLR, 2023.
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Introduction Technical Route

From Gap to Solution: Our Journey

What are flat minima?
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Introduction Technical Route

From Gap to Solution: Our Journey

The flat minima hypothesis

Figure: A Conceptual Sketch of Flat and Sharp Minima.

“On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” Keskar et al., ICLR, 2017.
“Label Noise SGD Provably Prefers Flat Global Minimizers.” Damian et al., NeurIPS, 2021.
“Why (and When) does Local SGD Generalize Better than SGD?.” Gu et al., ICLR, 2023.
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Introduction Technical Route

From Gap to Solution: Preliminary Experiments

Loss landscape visualization of ResNet-18 trained on CIFAR-10

using C-SGD and D-SGD, respectively.
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Introduction Technical Route

From Gap to Solution: Preliminary Experiments

Loss landscape visualization of ResNet-18 trained on CIFAR-10

using C-SGD and D-SGD, respectively.

The minima of D-SGD are flatter than those of C-SGD,

especially in large-batch scenarios;

The observation holds true across common topologies.
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Introduction Technical Route

From Gap to Solution: Preliminary Experiments

Loss landscape visualization of ResNet-18 trained on CIFAR-10

using C-SGD and D-SGD, respectively.

The minima of D-SGD are flatter than those of C-SGD,

especially in large-batch scenarios;

The observation holds true across common topologies.

Question

How does decentralization (or gossip averaging) improve flatness?
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Introduction Contribution

Main Contribution

What we find

D-SGD and average-direction Sharpness-aware minimization (SAM) are asymptotically equivalent.

“Sharpness-aware Minimization for Efficiently Improving Generalization.” Foret et al., ICLR, 2021.

(Speaker: Tongtian Zhu) Equivalence of Decentralized SGD and SAM 39 / 57



Theoretical results D-SGD as Sharpness-Aware Minimization

Sharpness-aware Minimization

Training objective: minw∈Rd max∥∈∥p≤ρ Ez∼D̃L(w + ϵ; z).

Foret et al. (2021) propose to use a first-order approximation
to simplify the max step:

LSAM(w) ≈ max
∥∈∥p≤ρ

[L(w) + ϵ⊤∇L(w)].

The gradient update of vanilla SAM becomes

∇LSAM(w) ≈ ∇L(w + ϵ∗) = ∇L(w + ρ
∇L(w)

∥∇L(w)∥2
).

“Sharpness-aware Minimization for Efficiently Improving Generalization.” Foret et al., ICLR, 2021.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Asymptotic equivalence. Note Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ] is of the order Lwa(t) +O( 1
m

∑m
j=1 ∥wj (t) − wa(t)∥22)

while the residuals are of the higher-order O( 1
m

∑m
j=1 ∥wj (t) − wa(t)∥32). Therefore, Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]

gradually dominates the optimization direction as the local models are near consensus (i.e., wj (t)→wa(t), ∀j).
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Universality. The theory is applicable to arbitrary communication topologies and general non-convex and

non-β-smooth problems (e.g., deep neural networks training).
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Sharpness regularization. D-SGD asymptotically optimizes Eϵ∼N (0,Ξ(t))[Lw+ϵ], an averaged perturbed loss

in a “basin” around w , rather than the original point-loss.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Sharpness regularization. Split “true objective” of D-SGD near consensus into the original loss plus an
average-direction sharpness:

Eµ(t)[L
D-SGD
w ] ≈ Lw︸︷︷︸

original loss

+ Eϵ∼N (0,Ξ(t))[Lw+ϵ − Lw ]︸ ︷︷ ︸
sharpness-aware regularizer

.

.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Regularization-optimization trade-off. Increasing the consensus distance enhances the sharpness of the

regularization effect, but it also complicates the optimization of Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ], and can cause

higher-order residual terms to dominate the whole optimization direction.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Decentralized SGD as Average-direction SAM

Main theorem (Decentralized SGD as SAM)

Given the objective L is continuous and has fourth-order partial derivatives. The mean

iterate of the global averaged model of D-SGD can be written as follows:

Eµ(t)[wa(t+1)] = wa(t)−η Eϵ∼N (0,Ξ(t))[∇Lwa(t)+ϵ]︸ ︷︷ ︸
asymptotic descent direction

+O(η Eϵ∼N (0,Ξ(t))∥ϵ∥32 +
η

m

m∑
j=1

∥wj (t) − wa(t)∥32)︸ ︷︷ ︸
higher-order residual terms

,

where Ξ(t) = 1
m

∑m
j=1(wj (t) − wa(t))(wj (t) − wa(t))

⊤ ∈ Rd×d denotes the weight diversity matrix.

Variational interpretation. D-SGD estimates uncertainty for free: The weight diversity matrix Ξ(t) (i.e.,
the empirical covariance matrix of wj (t)) implicitly estimate Σq, the intractable posterior covariance,

Ξ(t) =
1

m

m∑
j=1

(wj (t) − wa(t))(wj (t) − wa(t))
⊤ ≈ Σq.
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Theoretical results D-SGD as Sharpness-Aware Minimization

Recap
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Theoretical results Generalization Benefit in Large-batch Scenarios

Recap

Question

Why is the generalization benefit of decentralization more significant in large-batch settings?
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Theoretical results Generalization Benefit in Large-batch Scenarios

Generalization Benefit in Large-batch Scenarios

Corollary

Recall that N denotes the total training sample size and let B = |µ| denote the total batch
size. With a probability greater than 1−O( B

(N−B)η2 ), D-SGD implicit minimizes

LD-SGD
w =Lµ

w+ Tr(Hµ
wΞ(t)) +

η

4
Tr((Hµ

w )
2Ξ(t))︸ ︷︷ ︸

batch size independent sharpness regularizer

+ κ · 1

N

N∑
j=1

[
∥∇Lj

w −∇Lµ
w∥22 + Tr((H j

w − Hµ
w )

2
Ξ(t))

]
︸ ︷︷ ︸

batch size dependent variance regularizer

+
η

4
∥∇Lµ

w∥22 +RA +O(η2),

where κ = η
B
· N−B
(N−1)

, and RA absorbs all higher-order residuals.

Compared with C-SGD, D-SGD exhibits additional batch size-independent sharpness regularization.
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Summary

The Best of All Worlds?

Compared with centralized training, training in a fully decentralized fashion

avoids the requirements of a costly central server with heavy

communication burdens;

mitigates the risk of local information leakage;

support more flexible and dynamic participation of workers;

can potentially improve generalization (this paper).
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Summary

Discussion and Broader Impact

Improve Convergence and Generalization Analyses

Can we utilize the connection between decentralized training and centralized training to

improve the existing convergence and generalization bounds of decentralized algorithms?
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Summary

Discussion and Broader Impact

Improve Convergence and Generalization Analyses

Can we utilize the connection between decentralized training and centralized training to

improve the existing convergence and generalization bounds of decentralized algorithms?

Bridge Decentralized Training and SAM

Does D-SGD share the properties of SAM, beyond generalizablity, including better

interpretability (Andriushchenko et al., 2023) and transferability (Chen et al., 2022)?

“When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations.” Chen et al., ICLR, 2022.
“Sharpness-Aware Minimization Leads to Low-Rank Features.” Andriushchenko et al., HiLD Workshop, ICML, 2023.
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Summary

Summary

Research gap

Existing theories: Decentralization invariably undermines generalization;

Experiments: D-SGD can generalizes better than its centralized counterpart in some scenarios.

Main results

D-SGD asymptotically performs sharpness-aware minimization.

Implications

Regularization-optimization trade-off;

Free uncertainty evaluation mechanism;

The sharpness regularization is batch size-independent.

Furture work

Bridge decentralized training and SAM.
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Thank You!
Contact: raiden@zju.edu.cn (Tongtian Zhu)

https://arxiv.org/abs/2306.02913
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