

Subequivariant Graph Reinforcement Learning in 3D Environments

Project Page: https://alpc91.github.io/SGRL/

Runfa Chen*, Jiaqi Han*, Fuchun Sun, Wenbing Huang

Background: Physical AI (PAI)

- Research in PAI involves close interaction between:
 - > The structure of brain
 - Body morphology
 - Interaction with the environment

[Miriyev et.al. PAI. Nature Machine Intelligence 2020]

The architecture of morphology-based embodied intelligence

A. Miriyev and M. Kovač, "Skills for physical artificial intelligence," Nature Machine Intelligence, vol. 2, pp. 658-660, 2020.

Background: Morphology

Challenges in agent morphology

- Each robot has a different morphology.
- A separate policy is trained for each robotics setup.
- \succ Hard to generalize.

Prior Attempts

2D Planar!

[Sanchez-Gonzalez et.al. GN. ICML 2018]

[Wang et.al. NerveNet. ICLR 2018]

[Huang et.al. SMP. ICML 2020]

[Kurin et.al. AMORPHEUS. ICLR 2021]

[Hong et.al. SWAT. ICLR 2022]

Motivation

Symmetry!

Geometric Structure and Systems [Joshi et.al. Geometric Graph Neural Networks. NeurIPS 2022]

3D Geometric Graph!

molecules:(a) topology graph and (b) geometric graph.

The examples in the figure correspond to Aspirin (acetylsalicylic acid)

Our Setup: 3D-SGRL

Table 1. Comparison in the problem setup.

		2D-Planar	Our 3D-SGRL
State Space	Range	xoz-plane	3D space
	Initial	x^+ -axis	Arbitrary direction
	Target	x^+ -axis	Arbitrary direction
Action Space	# Actuators	1 per joint	3 per joint
	DoF	1 per joint	3 per joint
Symmetry	External Force	NULL	Gravity \vec{g} , Target \vec{d}
	Group	Ø	O $_{\vec{g}}(3)$

(a) 2D Planar Locomotion Environments

(b) 3D Subequivariant Locomotion Environments

cheetah

3D-SGRL

2D-Planar

humanoid

2D-Planar

3D-SGRL

walker

2D-Planar

3D-SGRL

hopper

2D-Planar

3D-SGRL

Method: Subequivariant Transformer (SET)

Equivariance and Subequivariance

Definition 2.1 (E(3)-equivariance). Suppose \vec{Z} to be 3D geometric vectors (positions, velocities, etc) that are steerable by E(3) transformations, and h non-steerable features.

- The function f is E(3)-equivariant, if for any transformation
- $g\in \mathrm{E}(3), f(g\cdot ec{m{Z}},m{h})=g\cdot f(ec{m{Z}},m{h}), orall ec{m{Z}}\in \mathbb{R}^{3 imes m},m{h}\in \mathbb{R}^d.$
- Similarly, f is invariant if $f(g \cdot \vec{Z}, h) = f(\vec{Z}, h)$.

Han et al. (2022a) additionally considers equivariance on the subgroup of O(3), induced by the external force $\vec{g} \in \mathbb{R}^3$ like gravity, defined as

$$\mathrm{O}_{ec{m{g}}}(3) := \left\{ oldsymbol{O} \in \mathbb{R}^{3 imes 3} \mid oldsymbol{O}^ op oldsymbol{O} = oldsymbol{I}, oldsymbol{O} ec{m{g}} = ec{m{g}}
ight\}$$

Method: SET

Method: SET

Experiments

Task definition

1. Multi-task with different morphologies: For each multi-task environment, a single policy is simultaneously trained on multiple variants.

2. Zero-Shot Generalization: We take the trained policies from multi-task and test on the unseen zeroshot testing variants.

3. Evaluation on v2-variants: We evaluate SET in a transfer learning setting where the trained policies from multi-task are tested and transferred on the v2-variants environments.

4. Single-task Learning: The policy in each plot is trained on one morphology variant and evaluated on this variant.

Experiments: Multi-Task

Experiments: Zero-Shot

Environment	Set	SWAT	SMP					
in-domain (3D_Walker++, 3D_Humanoid++, 3D_Cheetah++)								
3d_walker_3 3d_walker_6	$\begin{array}{c} {\bf 276.2 \pm 17.4} \\ {\bf 431.3 \pm 146.2} \end{array}$	$207.0 \pm 52.7 \\ 358.0 \pm 58.9$	$56.8 \pm 15.1 \\ 143.4 \pm 50.7$					
3d_humanoid_7 3d_humanoid_8	$\begin{array}{c} {\bf 244.8} \pm 7.9 \\ {\bf 299.6} \pm 23.7 \end{array}$	170.3 ± 51.7 141.4 ± 22.1	$190.9 \pm 16.2 \\ 185.4 \pm 9.2$					
3d_cheetah_11 3d_cheetah_12	$\begin{array}{c} \textbf{4643.9} \pm 292.6 \\ \textbf{916.0} \pm 39.7 \end{array}$	1785.3 ± 999.3 744.1 ± 317.1	$2.0 \pm 2.9 \\ 29.8 \pm 10.7$					
cross-domain (3D_CWHH++)								
3d_walker_3 3d_walker_6	$\begin{array}{c} \textbf{206.8} \pm 37.4 \\ \textbf{243.7} \pm 32.3 \end{array}$	17.9 ± 13.7 114.9 ± 40.3	$18.0 \pm 22.9 \\ 103.9 \pm 1.8$					
3d_humanoid_7 3d_humanoid_8	$\begin{array}{c} {\bf 161.9} \pm 3.4 \\ {\bf 180.0} \pm 6.5 \end{array}$	152.0 ± 6.8 156.6 ± 1.7	124.2 ± 15.7 129.3 ± 0.1					
3d_cheetah_11 3d_cheetah_12	$\begin{array}{c} \textbf{1078.1} \pm 722.8 \\ \textbf{3038.3} \pm 2803.3 \end{array}$	$4.3 \pm 1.6 \\ 349.7 \pm 304.3$	$6.2 \pm 0.5 \\ 6.6 \pm 1.2$					

Experiments: v2-variants

SWAT

SET

Experiments: Orientation Generalization

Methods	500k training steps			1M training steps						
	0°	90°	180°	270°	random	0°	90°	180°	270°	random
SWAT	1886.1 ± 148.9	1005.5 ± 615.3	$\textbf{120.5} \pm 178.5$	791.0 ± 493.4	1232.3 ± 72.9	2592.6 ± 155.6	1340.2 ± 668.0	$\textbf{-5.6}\pm8.5$	1193.5 ± 345.2	1178.6 ± 674.9
Set	1587.4 ± 411.3	1695.6 ± 278.4	$\textbf{1659.9} \pm 110.2$	1388.3 ± 173.8	1465.2 ± 161.0	4622.0 ± 292.8	4799.5 ± 172.9	$\textbf{4756.3} \pm 103.4$	4899.8 ± 139.7	4902.8 ± 62.9

SWAT SET

Experiments: Comparison with Heading Normalization (HN)

Take-away

- We introduce 3D-SGRL, a set of more practical yet highly challenging benchmarks for morphology-agnostic RL, where the agents are permitted to turn and move in the 3D environments with arbitrary starting configurations and arbitrary target directions.
- To effectively optimize the policy on such challenging benchmarks, we propose to enforce the policy network with geometric symmetry. We introduce a novel architecture dubbed SET that captures the rotation/translation equivariance particularly when external force fields like gravity exist in the environment.
- We verify the performance of the proposed method on the proposed 3D benchmarks, where it outperforms existing morphology-agnostic RL approaches by a significant margin in various scenarios.

Thanks!

For more information, welcome to visit our website:

https://alpc91.github.io/SGRL/