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Abstract

>>

= Background:
o Real-world sequential decision-making tasks are very challenging.

e In many real-world sequential decision-making tasks, the observation data could be / ™ SR
. . . . . . Agent A Env.
noisy or incomplete due to the intrinsic low quality of the sensors or unexpected Sensor ;
malfunctions; that is, the agent's perceptions are rarely perfect. or |

RL

= Motivation: é

o Avoid decision errors due to probability estimation. S

e The current POMDP RL methods, such as particle-based and Gaussian-based, can
only provide a probability estimate of hidden states, which may lead to inefficient
and even wrong decision-making.

= Main contribution:
o We propose a set-membership belief state-based reinforcement learning algorithm to solve POMDP.

o We prove that our belief estimation method can provide a series of belief state sets that always contain the
true states under the unknown-but-bounded (UBB) noise.

0 Extensive experiments on benchmark tasks show that our SBRL algorithm performs well.
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Preliminary

>>

hidden to the
POMDP agent

Set-membership filtering has significant advantages in the
following two POMDP scenarios:

Accessible to the
agent observations,
rewards, actions

» Unknown-but-bounded(UBB) noise: In this situation,
sensor and state transition noise distributions are multi-
modal and imprecise due to complex factors, making it
Impossible to model the noise accurately.

The (belief inference graphical model)BIGM of » Safety-critical environment: To meet the application
POMDP. The white circles represent the requirements of safety-critical systems such as autonomous
unobservable hidden states s; the grey icons driving or robot control many safe RL works pursue agents
represent observations o, rewards r are accessible, to learn a zero-violation policy.

and the agent determines the actions a; the green
and purple circles represent the belief states
obtained through inference.
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Proposed Method

>>

To accurately describe the hidden
state, we propose the Set-membership
Belief state learning Model (SBM) to
provide a series of belief state sets
that always contain the true states
under the UBB sequence noise.
Specifically, the SBM model consists
of the following components:

State transition model : sy = T(St—1, ar—1,w; 1)
Observation model : oy = Z(s¢,wy)
Reward model : ry = R(s¢).

And the architecture of the set-
membership filter is the following.
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The result for the updated bounded belief
and the existence conditions are developed,
which are given in the following theorem.

Theorem 3.1. If Equation (4), Equation (5), and Equa-
tion (6) hold, the updated bounded optimized belief set
for the state sy can be computed by solving the following

semidefinite program (SDP) in the variables P, > 0,71, >
0,75 >0, 5

min Tr (P;)

. o )
subjecttot, > 0,7, >0
[ i T ] <0 9)
(®)" -I | =

where (I)f = [_I(f'gf/t—l (I = I(f)Ef/,_l — I(f], Ht =
diag (1 — 7. — 72, =71, —73(M?)™Y)), and 1 is the iden-
tity matrix with appropriate dimensions.

The we integrate SBM into a POMDPs RL
framework and propose the Set-membership
Belief-based  Reinforcement  Learning
(SBRL) algorithm, which can be trained
jointly. The overall loss function is

LSBRL(Q ) = —=LP(O)+ ALY (&) — A L™ (¥)
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Overview of SBRL. The SBRL consists of two
parts: a Set-membership Belief state learning
Model (SBM) for learning bounded belief
state sets and an RL controller for making
decisions based SBM.



Experiment Results

>>

We empirically evaluate our method for several challenging control tasks. The main

experimental results are shown as follows.
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Safe Gym with noise. Average episodic return of SBRL and baseline methods
in the 6 benchmark environments. The curves are smoothed uniformly for
better visualization.
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(b) Doggo-Button1-v0

Ablation Studies. The first row is the average episodic
return, episodic cost, and overall cost rate on Point-
Goall-v0; the second row is the average episodic return,
episodic cost, and overall cost rate on Doggo-Button1-vO0.
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