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Background: Retrosynthesis prediction

Retrosynthesis Prediction:
Given a target product molecule 𝑇 ∈ ℳ(the set of chemical molecules), the goal of one-step 
retrosynthesis is to predict a set of reactants ℛ = {𝑟!, 𝑟", ⋯ , 𝑟#} ⊆ ℳ that can react to synthesize 
this product.

Cl Cl

Cl

N

O
NH

O
N

O
NH2 Cl

Cl

Cl
Cl

O

⟶ +



Background: Single-step retrosynthesis model

Template-based algorithms first extract template rules from the training data, and then formulate the 
retrosynthesis task as template classification or template retrieval.

One-step retrosynthesis model: 1. Template-based

[1] Dai et al., Retrosynthesis prediction with conditional graph logical network. In NeurIPS, 2019. 



Background: Single-step retrosynthesis model

Semi-template-based methods first identify the reaction center(s), break the target into several 
disconnected subgraphs, and recover the full molecule structures of reactants by attaching the 
leaving groups[2] or generative modeling[3,4].  

One-step retrosynthesis model: 2. Semi-template-based

[2] Somnath et al., Learning graph models for retrosynthesis prediction. In NeurIPS, 2021.
[3] Shi et al., G2Gs: A graph to graphs framework for retrosynthesis prediction. In ICML, 2020.
[4] Yan et al., RetroXpert: decompose retrosynthesis prediction like a chemist. In NeurIPS, 2020.



Background: G2Gs
One-step retrosynthesis model: 2. Semi-template-based



Background: Single-step retrosynthesis model
One-step retrosynthesis model: 2. Semi-template-based



Background: Single-step retrosynthesis model
One-step retrosynthesis model: 2. Semi-template-based



Background: Single-step retrosynthesis model

Template-free methods use an end-to-end[5] or graph-edit based formulation[6]. 

One-step retrosynthesis model: 3. Template-free

[5] Karpov et al., A transformer model for retrosynthesis. In ICANN, 2019.
[6] Sacha et al., Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. In ICML workshop, 2021.



Background: Retrosynthetic planning

Retrosynthetic planning:
Given a target molecule 𝑇 ∈ ℳ(the set of molecules), the goal of retrosynthetic planning is to 
search for the starting materials ℛ = 𝑟!, 𝑟", ⋯ , 𝑟# ⊆ 𝒮(the set of starting materials) that can 
synthesize the target molecule through a set of chemical reactions 𝜏 = 𝑅!, 𝑅", ⋯ , 𝑅$
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Current solutions for retrosynthetic planning

1. Existing strategies model retrosynthetic planning as a search problem. 

2. Starting from the target as the root node, these approaches employ some search algorithms to 
select the most promising node to expand, and then expand it into reaction precursors with a one-
step retrosynthesis model.

3. Until a viable route is found in which all the leaf nodes are commercially available.

Current solutions for retrosynthetic planning:

Drawback:

Previous work lacks the explicit modeling of the contextual information of in-context reactions 
along the partial synthetic routes preceding any given node. 



Method: FusionRetro

1. Inspired by the recent advancements in in-context learning within large language models, we 
utilize in-context examples for retrosynthesis prediction in retrosynthetic planning.

2. Another part of our motivation stems from the discrepancy between machine learning methods 
prevalent in existing works and the actual thought process of chemists. 

Motivation:



Method: Framework
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Our framework is composed of three modules: encode, fusion, and readout. 
1. After encoding the molecules, 
2. we utilize the fusion module to generate the fused molecule representations 
(FMR).
3. This FMR is then employed to predict the reactants.



Method: Architecture

Our architecture consists of the encoder, decoder, and fusion modules.
1. We use encoder to transform the embeddings of input SMILES into latent representations. 
2. Then we use the fusion module to attain a fused representation,
3. which is fed into decoder to yield the final prediction.
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Evaluation: Protocol
Current evaluation metric for retrosynthetic planning:

1. Current evaluation metric of multi-step planning focuses on efficiency or quality. 

2. Search efficiency has been measured in the success rate of finding pathways with 
buyable starting materials, as well as average numbers of iterations and node visits.

Drawback:

Some existing benchmarks[7] based on current metrics do not verify if the searched 
materials can synthesize the target molecule.

Our solution:

We propose a new evaluation metric: the set-wise exact match between the proposed 
starting materials and the ground truth.

[7] Chen et al., Retro*: Learning retrosynthetic planning with neural guided a* search. In ICML, 2020.



Evaluation: Results
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning

Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%).

Search Algorithm Retro* Retro*-0 Greedy DFS

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1

Template-based

Retrosim (Coley et al., 2017) 35.1 40.5 42.9 44.0 44.6 35.0 40.5 43.0 44.1 44.6 31.5
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 54.4 42.0 49.3 52.0 53.6 54.3 39.2

GLN (Dai et al., 2019) 39.6 48.9 52.7 54.6 55.7 39.5 48.7 52.6 54.5 55.6 38.0

Template-free

G2Gs (Shi et al., 2020) 5.4 8.3 9.9 10.9 11.7 4.2 6.5 7.6 8.3 8.9 3.8
GraphRetro (Somnath et al., 2021) 15.3 19.5 21.0 21.9 22.4 15.3 19.5 21.0 21.9 22.2 14.4
Megan (Sacha et al., 2021) 18.8 29.7 37.2 42.6 45.9 19.5 28.0 33.2 36.4 38.5 32.9
Transformer (Karpov et al., 2019) 31.3 40.4 44.7 47.2 48.9 31.2 40.5 45.1 47.3 48.7 26.7
FusionRetro 37.5 45.0 48.2 50.0 50.9 37.5 45.0 48.3 50.2 51.2 33.8

match when the predicted starting material set aligns with at
least one of the multiple ground truths. Additionally, we im-
plement a pruning search, halting the search when the length
of the predicted synthetic route surpasses the depth of the
ground truth synthetic route. Utilizing our evaluation metric
allows us to compare the performances of different retrosyn-
thesis models in conjunction with various search algorithms,
thereby providing a benchmark for future studies.

Setting and Baselines. We evaluate the effectiveness of
our proposed retrosynthesis method in conjunction with
three different search algorithms for retrosynthetic planning.
This approach is benchmarked against existing single-step
retrosynthesis models, which can be broadly categorized
into two groups: template-based and template-free models.
Each model is trained using the reactions in our training
dataset. Upon completion of the retrosynthesis training,
we employ the Retro* (Chen et al., 2020), Retro*-0, and
Greedy DFS search algorithms. For all baselines, except for
Transformer, we adhere to their original experimental setups,
including hyperparameters and data processing, as described
in their respective papers. These experiments are conducted
using their publicly available codes. Transformer is imple-
mented using Pytorch (Paszke et al., 2019), and we re-tuned
the learning rate due to the spike phenomenon observed
with the learning rate reported in the original paper. The
template-based baseline approaches we consider include
Retrosim (Coley et al., 2017), Neuralsym (Segler & Waller,
2017), and GLN (Dai et al., 2019). We also evaluate end-to-
end template-free approaches such as Transformer (Karpov
et al., 2019) and Megan (Sacha et al., 2021), as well as
semi-template-based models like G2Gs (Shi et al., 2020)
and GraphRetro (Somnath et al., 2021). Our framework is
depicted in Figure 4. For all hyperparameters, except for
the learning rate (due to the spike phenomenon), we adhere
to the settings reported in the publicly released Transformer

code and do not perform any additional hyperparameter tun-
ing. Detailed information on the hyperparameters can be
found in Appendix B.1. Our proposed model, FusionRetro,
is trained using 2 NVIDIA Tesla V100 GPUs.

5.3. Results

Comparison with Template-free Baselines. The pri-
mary results are presented in Table 1. It’s clear that our
proposed model, FusionRetro, outperforms other template-
free baseline methods. Further insights can be drawn from
Figure 6, which shows that as the depth of the ground truth
synthetic routes increases, the performance gap between
the Transformer and FusionRetro generally widens. This
demonstrates the value of incorporating context information
for representation fusion. In essence, these results indicate
that our proposed model consistently performs better than
Transformer, particularly in predicting long synthetic routes.

Analysis of the Benchmark. The performance of base-
line models on our benchmark does not align well with
single-step retrosynthesis predictions on the USPTO-50K
dataset. Current two-stage semi-template-based models (Shi
et al., 2020; Somnath et al., 2021) either outperform or
match template-based and template-free models on USPTO-
50K single-step retrosynthesis prediction, yet perform
poorly on our benchmark. One main factor is that approx-
imately 95% of reactions in the USPTO-50K dataset have
only one reaction center due to heavy filtering, whereas
in our constructed dataset, around 30% of reactions have
multiple reaction centers. Upon examining the open-source
code of G2Gs, we found that it can only handle cases with
one reaction center, which explains its weak performance on
our benchmark. The performance of template-free models
is not impacted by the number of reaction centers. Addi-
tionally, we present the results of single-step retrosynthesis
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1. FusionRetro outperforms other template-free baseline methods. 

2. As the depth of the ground truth synthetic routes increases, the performance gap 
between the Transformer and FusionRetro generally widens.



Evaluation: Results

2. As the depth of the ground truth synthetic routes increases, the performance gap 
between the Transformer and FusionRetro generally widens.



Conclusion
1. FusionRetro is the first method in this field that takes context information into 
account, greatly boosting the performance for realistic multi-step planning. 

2. We further introduce new benchmarks for better evaluation of retrosynthesis 
models, especially for practical multi-step planning settings. 

3. We hope our approach can shed light on the research of data-driven retrosynthetic 
planning, and inspire more studies toward the practical multi-step scenario. 

4. Our approach can be viewed as in-context learning and can inspire more works to 
further explore in-context learning techniques in large language models for scientific 
problems. 



Arxiv&Code

ArXiv: https://arxiv.org/pdf/2209.15315.pdf

Code: https://github.com/SongtaoLiu0823/FusionRetro

Thanks!!!

https://arxiv.org/pdf/2209.15315.pdf
https://github.com/SongtaoLiu0823/FusionRetro

