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Background: Retrosynthesis prediction

Retrosynthesis Prediction:

Given a target product molecule T € M (the set of chemical molecules), the goal of one-step
retrosynthesis is to predict a set of reactants R = {ry, 1y, -+, 1;,} € M that can react to synthesize
this product.



Background: Single-step retrosynthesis model

One-step retrosynthesis model: 1. Template-based

Template-based algorithms first extract template rules from the training data, and then formulate the
retrosynthesis task as template classification or template retrieval.
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[1] Dai et al., Retrosynthesis prediction with conditional graph logical network. In NeurIPS, 2019.



Background: Single-step retrosynthesis model

One-step retrosynthesis model: 2. Semi-template-based

Semi-template-based methods first identify the reaction center(s), break the target into several
disconnected subgraphs, and recover the full molecule structures of reactants by attaching the
leaving groups[2] or generative modeling[3.4].

[2] Somnath et al., Learning graph models for retrosynthesis prediction. In NeurIPS, 2021.
[3] Shi et al., G2Gs: A graph to graphs framework for retrosynthesis prediction. In /CML, 2020.
[4] Yan et al., RetroXpert: decompose retrosynthesis prediction like a chemist. In NeurIPS, 2020.



Background: G2Gs

One-step retrosynthesis model: 2. Semi-template-based
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Background: Single-step retrosynthesis model

One-step retrosynthesis model: 2. Semi-template-based
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Background: Single-step retrosynthesis model

One-step retrosynthesis model: 2. Semi-template-based
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Background: Single-step retrosynthesis model

One-step retrosynthesis model: 3. Template-free

Template-free methods use an end-to-end[5] or graph-edit based formulation[6].
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[5] Karpov et al., A transformer model for retrosynthesis. In ICANN, 2019.
[6] Sacha et al., Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. In /ICML workshop, 2021.



Background: Retrosynthetic planning

Retrosynthetic planning:
Given a target molecule T € M (the set of molecules), the goal of retrosynthetic planning is to

search for the starting materials R = {ry, 1y, -+, 15,} € S(the set of starting materials) that can
synthesize the target molecule through a set of chemical reactions T = {R{, Ry, **, R;;,}
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Current solutions for retrosynthetic planning

Current solutions for retrosynthetic planning:

1. Existing strategies model retrosynthetic planning as a search problem.
2. Starting from the target as the root node, these approaches employ some search algorithms to
select the most promising node to expand, and then expand it into reaction precursors with a one-

step retrosynthesis model.

3. Until a viable route is found in which all the leaf nodes are commercially available.

Drawback:

Previous work lacks the explicit modeling of the contextual information of in-context reactions
along the partial synthetic routes preceding any given node.



Method: FusionRetro

Motivation:

1. Inspired by the recent advancements in in-context learning within large language models, we
utilize in-context examples for retrosynthesis prediction in retrosynthetic planning.

2. Another part of our motivation stems from the discrepancy between machine learning methods
prevalent in existing works and the actual thought process of chemists.



Method: Framework
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Our framework 1s composed of three modules: encode, fusion, and readout.

1. After encoding the molecules,

2. we utilize the fusion module to generate the fused molecule representations
(FMR).

3. This FMR 1is then employed to predict the reactants.



Method: Architecture
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Our architecture consists of the encoder, decoder, and fusion modules.

1. We use encoder to transform the embeddings of input SMILES into latent representations.

2. Then we use the fusion module to attain a fused representation,
3. which 1s fed into decoder to yield the final prediction.



Evaluation: Protocol

Current evaluation metric for retrosynthetic planning:
1. Current evaluation metric of multi-step planning focuses on efficiency or quality.

2. Search efficiency has been measured in the success rate of finding pathways with
buyable starting materials, as well as average numbers of iterations and node visits.

Drawback:

Some existing benchmarks|[7] based on current metrics do not verify if the searched
materials can synthesize the target molecule.

Our solution:

We propose a new evaluation metric: the set-wise exact match between the proposed
starting materials and the ground truth.

[7] Chen et al., Retro*: Learning retrosynthetic planning with neural guided a* search. In ICML, 2020.



Evaluation: Results

Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%).

. Retro* Retro*-0 Greedy DFS

Search Algorithm

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1

Template-based
Retrosim (Coley et al., 2017) 35.1 405 429 440 446 350 405 43.0 441 446 31.5
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 544 42.0 493 520 53.6 543 39.2
GLN (Dai et al., 2019) 39.6 489 52.7 54.6 55.77 395 487 52.6 54.5 55.6 38.0
Template-free

G2Gs (Shi et al., 2020) 54 83 99 109 117 42 65 76 83 89 3.8
GraphRetro (Somnath et al., 2021) 153 19.5 21.0 219 224 153 195 21.0 219 222 14.4
Megan (Sacha et al., 2021) 188 29.7 372 426 459 195 28.0 332 364 385 32.9
Transformer (Karpov et al., 2019) 31.3 404 447 472 489 312 405 45.1 473 48.7 26.7
FusionRetro 375 45.0 48.2 50.0 509 375 45.0 483 50.2 51.2 33.8

1. FusionRetro outperforms other template-free baseline methods.

2. As the depth of the ground truth synthetic routes increases, the performance gap
between the Transformer and FusionRetro generally widens.



Evaluation: Results
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2. As the depth of the ground truth synthetic routes increases, the performance gap
between the Transformer and FusionRetro generally widens.



Conclusion

1. FusionRetro 1s the first method in this field that takes context information into
account, greatly boosting the performance for realistic multi-step planning.

2. We further introduce new benchmarks for better evaluation of retrosynthesis
models, especially for practical multi-step planning settings.

3. We hope our approach can shed light on the research of data-driven retrosynthetic
planning, and inspire more studies toward the practical multi-step scenario.

4. Our approach can be viewed as in-context learning and can inspire more works to
further explore in-context learning techniques in large language models for scientific
problems.



Arxiv&Code

ArXiv: https://arxiv.org/pdf/2209.15315.pdf

Code: https://github.com/SongtaolLiu0823/FusionRetro
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