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Motivation

We focus on the challenges of generative replay (GR) methods in continual learning:  

• GR method is one of the most popular methods in continual learning, but most of 
them ignore the benefit offered by the classifier to the generator.

• Existing GR methods using VAE or GAN which is beaten by diffusion models [Ho 
et al., 2020].

• Most GR methods reuse generated samples which may produce low-quality 
samples for previous tasks [Shin et al., 2017].
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● Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. In NeurIPS, 2020.
● Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning with deep generative replay. In NeurIPS, pp. 2990–2999, 2017.
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Our Method
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Denoising diffusion probabilistic model
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• Our work is based on DDPM [Ho et al., 2020] which is a typical diffusion model 
architecture and consists of a forward and a reverse processes. We adopt DDPM as the 
generator.
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Instruction-operator
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• We use the classifier, which was trained in sequence on previous tasks, to instruct the 
sampling of DDPM. Specifically, we calculate the instruction-operator through the 
classifier .

• The instruction-operator can be regarded as a type of distillation of previous knowledge to 
classifier. Benefiting from the instruction of the classifier, DDGR improves the quality of 
the samples of previous tasks produced by the generator.
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Deep diffusion-based generative replay
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• (1) Generate samples from DDPM 
with instruction-operator.

• (2) Train the classifier with 
generated samples and current tasks’ 
data.

• (3) Update DDPM.
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Experiments
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Datasets
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In this paper, we consider two scenarios 
commonly encountered in CL, namely class 
incremental (CI) [van de Ven et al., 2019] and class 
incremental with repetition (CIR) [Cossu et al., 
2022].

• CI: CIFAR-100 and ImageNet [Deng et al., 2009]

• CIR: CORe50 [Lomonaco et al., 2017].

● van de Ven, G. M. and Tolias, A. S. Three scenarios for continual learning. CoRR, abs/1904.07734, 2019.
● Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A., and Lomonaco, V. Is class-incremental enough for continual learning? 

Frontiers Artif. Intell., 5: 829842, 2022.
● Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In CVPR, pp. 248–255, 2009.
● Lomonaco, V. and Maltoni, D. Core50: a new dataset and benchmark for continuous object recognition. In CoRL, 2017.
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Results in CI 
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Results in CIR 
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In class incremental scenario with 
repetition, we refer to each task as 
a batch.
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Conclusion
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Main Contributions
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Our main contributions can be summarized as follows:  

• We focus on sampling process of a diffusion model and explore how this process might 
be instructed by a pretrained classifier. Specifically, we calculate instruction-operator
through classifier at each time step of diffusion model to guide the generation of 
samples.

• The novel DDGR is proposed based on a diffusion model, where the classifier uses the 
instruction-operator to instruct the sampling process of the diffusion model. Benefiting 
from the instruction-operator, DDGR significantly improves the quality of generated 
samples for previous tasks.

• Extensive experimental results under class incremental (CI) and class incremental with 
repetition (CIR) settings demonstrate the advantages of DDGR.
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Thanks for watching!
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