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BEATSs "|i: Audio Pre-Training with Acoustic Tokenizers

Unlike the previous methods that employ continuous feature reconstruction loss for audio
pre-training, we explore audio pre-training with discrete label prediction loss for the first
time and outperform previous state-of-the-art models by a large margin with much less

training data and model parameters.
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Background: SSL with discrete label prediction

* Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and

audio domains.

* SSL with discrete label prediction loss Is widely adopted for language, vision, speech

modalities, and shows better performance than reconstruction loss.
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Background: SSL with discrete label prediction

* Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and
audio domains.

* SSL with discrete label prediction loss Is widely adopted for language, vision, speech

modalities, and shows better performance than reconstruction loss.

* Compared with reconstruction loss, semantic-rich discrete label prediction encourages the
SSL model to abstract the high-level semantics and discard the redundant details.
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Background: SSL with discrete label prediction

* Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and
audio domains.

* SSL with discrete label prediction loss is widely adopted for language, vision, speech
modalities, and shows better performance than reconstruction loss.

* The state-of-the-art audio SSL model still employ reconstruction loss for pre-training.
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Background: SSL with discrete label prediction

Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and
audio domains.

SSL with discrete label prediction loss is widely adopted for language, vision, speech
modalities, and shows better performance than reconstruction loss.

The state-of-the-art audio SSL model still employ reconstruction loss for pre-training.

Questions:

1. Would discrete label prediction be a better choice for audio pre-training?

2. How to design the acoustic tokenizer for semantic-rich discrete label generation?
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Would discrete label prediction be a better choice for audio pre-training?



Would discrete label prediction be a better choice for audio pre-training?

1. Humans understand audio by extracting and clustering the high-level semantics instead
of focusing on the low-level time-frequency detalls.
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2. Better audio modeling efficiency by encouraging the model to focus on the high-level
semantics and discard the redundant details.



Would discrete label prediction be a better choice for audio pre-training?

1. Humans understand audio by extracting and clustering the high-level semantics instead
of focusing on the low-level time-frequency detalls.
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2. Better audio modeling efficiency by encouraging the model to focus on the high-level
semantics and discard the redundant details.

3. Advances the unification of language, vision, speech, and audio pre-training, which
enables the possibility of building a foundation model across modalities with a single pre-
training task.
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How to design the semantic-rich acoustic tokenizer?



How to design the semantic-rich acoustic tokenizer?

* Audio property:
1. Continuous signals.

2. Wide variations of environmental events (human voices, nature sounds, musical beats)

3. Each environmental events might have various durations in different occasions.

Human speak Dog bark Dog bark while bird singing Wind blow while bird singing



How to design the semantic-rich acoustic tokenizer?

* Audio property:
1. Continuous signals.

2. Wide variations of environmental events (human voices, nature sounds, musical beats)

3. Each environmental events might have various durations in different occasions.

Human speak Dog bark Dog bark while bird singing Wind blow while bird singing

* Can we use the text tokenizer?

This is a test. —{ ol ]—> This | is | a | test | .




How to design the semantic-rich acoustic tokenizer?

* Audio property:
1. Continuous signals.

2. Wide variations of environmental events (human voices, nature sounds, musical beats)

3. Each environmental events might have various durations in different occasions.

Human speak Dog bark Dog bark while bird singing Wind blow while bird singing

* Can we use the speech tokenizer?

DH|IH1(S |IH1|{Z | A | TIEHL1|S| T

A

Speech

THIS IS A TEST Tokenizer




How to design the semantic-rich acoustic tokenizer?

* Audio property:

1. Continuous signals.

2. Wide variations of environmental events (human voices, nature sounds, musical beats)

3. Each environmental events might have various durations in different occasions.

Human speak Dog bark Dog bark while bird singing

* Can we use the visual tokenizer?
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BEATS: an iterative audio pre-training framework

* An acoustic tokenizer and an audio SSL model are optimized by iterations.
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BEATS: an iterative audio pre-training framework

* An acoustic tokenizer and an audio SSL model are optimized by iterations.

* Each iteration:
1. Generate discrete labels with the acoustic tokenizer
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BEATS: an iterative audio pre-training framework

* An acoustic tokenizer and an audio SSL model are optimized by iterations.

* Each iteration:
1. Generate discrete labels with the acoustic tokenizer
2. Optimize the audio SSL model with mask and discrete label prediction loss
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BEATSs : an iterative audio pre-training framework

* An acoustic tokenizer and an audio SSL model are optimized by iterations.

* Each iteration:
1. Generate discrete labels with the acoustic tokenizer
2. Optimize the audio SSL model with mask and discrete label prediction loss
3. Update the acoustic tokenizer with audio semantics distilled from the pre-trained or fine-tuned

audio SSL model
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BEATSs : an iterative audio pre-training framework

* An acoustic tokenizer and an audio SSL model are optimized by iterations.

* Each iteration:
1. Generate discrete labels with the acoustic tokenizer
2. Optimize the audio SSL model with mask and discrete label prediction loss
3. Update the acoustic tokenizer with audio semantics distilled from the pre-trained or fine-tuned

audio SSL model
Tokenizer
 Cold start:

* we use random projection as the acoustic tokenizer in the first iteration.
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BEATSs : an iterative audio pre-training framework
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Comparing with the SOTA Single Models

We gray-out the models and results Model #Param  Data Audio Speech

Wlth externa | d atasets. No Pre-Training AS-2M  AS-20K  ESC-50 KS1  KS2 ER

PANN [Kong et al., 2020] 81M - 43.1 27.8 83.3 - 61.8 -
ERANN [Verbitskiy et al., 2022] 55M - 45.0 - 89.2 - - -
Out-of-domain Supervised Pre-Training
Random-Projection | PSLA [Gong et al., 2021b] 14M IN 444 319 - - 96.3 -
Tokenizer AST [Gong et al., 2021a] 86M IN 459 347 88.7 955 98.1 56.0
N J MBT [Nagrani et al., 2021] 86M IN-21K 443 313 - - - -
¢ PaSST [Koutini et al., 2021] 86M IN 47.1 - - - -
HTS-AT [Chen et al., 2022a] 31M IN 47.1 - - - 98.0 -
0 h Wav2CLIP [Wu et al., 2022] 74M TI+AS - - 86.0 - - -
BEATSs iterl AudioCLIP [Guzhov et al., 2022] 93M TI+AS 259 - 96.7 - - -
q y In-domain Supervised Pre-Training
PANN [Kong et al.. 2020] 81M AS - - 94.7 - - -
ERANN [Verbitskiy et al., 2022] 55M AS - - 96.1 - - -
- ) AST [Gong et al., 2021a] 86M IN+AS 459 - 95.6 - 97.9 -
Rl [ PaSST [Koutini et al., 2021] 86M IN+AS  47.1 - 96.8 - - -
N ) HTS-AT [Chen et al., 2022a] 31M IN+AS  47.1 - 97.0 - - -
CLAP [Elizalde et al., 2022] 190.8M TA - - 96.7 - 96.8 -
¢ Downstream Audio-MAE [Xu et al., 2022] 86M AS - - 974 - - -
r Y supervised data Self-Supervised Pre-Training
; : : Wav2vec [Schneider et al., 2019] 33M LS - - - 96.2 - 59.8
BEATSs iter2 ’[ Fine-Tuned BEATS iter2 J Wav2vec 2.0 [Baevski et al, 2020]  95M LS - . - 96.2* - 63.4*
< J (AS-2M / AS-20K) SS-AST [Gong et al., 2022a] 89M AS+LS - 31.0 88.8 96.0 980 59.6
¢ ¢ MSM-MAE [Niizumi et al., 2022]  86M AS - - 85.6 - 87.3 -
p . p . MaskSpec [Chong et al., 2022] 86M AS 47.1 323 89.6 - 97.7 -
- - MAE-AST [Baade et al., 2022 86M AS+LS - 30.6 90.0 95.8 97.9 59.8
Tokenizer iter3 Tokenizer iter3+ Audio-MAE [Xu et al., 2022] 86M AS 473 37.1 94.1 96.9 983 -
\ J \ J data?vec [Baevski et al., 2022] 94M AS - 345 - - - -
¢ ¢ [Audio-MAE Large [Xu ct al, 2022] _304M___AS 474 316 | - - ; -
CAV-MAE [Gong et al., 2022b] 86M AS+IN 449 342 - - - -
4 \ 4 \ Olll'S
BEATS iter3 BEATS iter3+ BEATSjer1 90M AS 479 36.0 04.0 98.0 983 659
{ ) 0 ) BEATS ier2 90M AS 48.1 38.3 95.1 97.7 983 66.1
BEATSjier3 90M AS 48.0 38.3 95.6 97.7 983 645

iter3+ S0M AS 48.6 38.9 08.1 98.1 98.1 65.0




Comparing with the SOTA Ensemble Models

Model SL Data AS-2M
PSLA [Gong et al., 2021b] IN+AS 474
AST [Gong et al., 2021a] IN+AS  48.5

HTS-AT [Chen et al., 2022a] IN+AS  48.7
PaSST [Koutini et al., 2021]  IN+AS  49.6

BEATS (5 models) AS 50.4
BEATS (10 models) AS 50.6




Audio Classification

Audio Classification on AudioSet

Leaderboard Dataset
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Comparing Different Pre-Training Targets via Visualization
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Broader Impacts

* Powers all the top 5 winning systems in DCASE 2023 Sound Event Detection Challenge

Systems
with
BEATs

Submission Submission
code code Technical Ranking score PSDS 1 PSDS 2
Rank (PSDS 1) (PSDS 2) Report (Evaluation dataset) :ls (Evaluation dataset) .l (Evaluation dataset) .ls
(1 Kim_GIST-HanwhaVision_taskda 2 Kim_GIST-HanwhaVision_taskda_3 o] 1.68 0.835 (0.826 - 0.846)
2 Zhang_|OA_taskda 6 Zhang_|OA_taskda_7 ® 1.63 0.830 (0.820 - 0.842)
3 Wenxin_TJU taskda 6 Wenxin_TJU_taskda 6 ® 1.61 0.831 (0.823 - 0.842)
4 Xiao FMSG_taskda_4 Xiao_FMSG_taskda 4 ® 1.60 0.813 (0.802 - 0.827)
4 Guan_HIT taskda_3 Guan_HIT taskda_4 ® 1.60 0.855 (0.844 - 0.867)
\ 5 Chen_CHT_taskda_2 Chen_CHT _taskda_2 ® 1.58 0.779 (0.768 - 0.792)
6 Li_USTC_taskda 6 Li_ USTC task4a 6 ® 1.56 0.783 (0.771 - 0.796)
7 Liu_NSYSU_taskda 7 Liu_NSYSU_taskda 7 ® 1.55 0.521 (0.510 - 0.531 0.813 (0.796 - 0.831)
8 Cheimariotis_DUTH_taskda_1 Cheimariotis_DUTH_task4a_1 o] 1.53 0.516 (0.504 - 0.529) 0.796 (0.784 - 0.808)
9 Baseline_BEATS Baseline_BEATS 1.52 0.510 (0.496 - 0.523) 0.798 (0.782- 0.811)
10 Wang_XiaoRice_taskda 1 Wang_XiaoRice_task4a 1 ® 1.50 0.494 (0.477 - 0.510) 0.801 (0.789 - 0.815)
1 Lee CAUET taskda 1 Lee CAUET taskda 2 ® 1.28 0.425 (0.415 - 0.440) 0.674 (0.661 - 0.590)
12 Liu_SRCN_taskda_4 Liu_SRCN_taskda_4 ® 1.25 0.412 (0.400 - 0.424) 0.663 (0.652
13 Barahona_AUDIAS taskda 2 Barahona_AUDIAS taskda 4 o} 1.21 0.380 (0.361 - 0.406) 0.673 (0.652
14 Wu_NCUT_taskda_1 Wu_NCUT_taskda_1 ® 1.15 0.391 (0.379 - 0.405) 0.596 (0.584 - 0.610
15 Gan_NCUT _taskda_1 Gan_NCUT _taskda_1 ® 1.12 0.365 (0.353 - 0.377) 0.603 (0.539 - 0.517
16 Baseline Baseline 1.00 0.327 (0.317 - 0.239) 0.538 (0.515 - 0.566)




Broader Impacts

* Powers all the top 5 winning systems in DCASE 2023 Sound Event Detection Challenge
* Powers the winning system in DCASE 2023 Automated Audio Captioning Challenge.
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Conclusion

* We propose BEATS, an iterative audio pre-training framework, which opens the door to

audio pre-training with a discrete label prediction loss.

* We provide effective acoustic tokenizers to quantize continuous audio features into

semantic-rich discrete labels.
* We achieve state-of-the-art results on several audio understanding benchmarks.

* The pre-trained/fine-tuned models and codes are released at https://aka.ms/beats.
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