



# BEATs : Audio Pre-Training with Acoustic Tokenizers

Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che, Xiangzhan Yu, Furu Wei

Presenter: Sanyuan Chen

Paper: <u>https://icml.cc/virtual/2023/oral/25555</u> Codes and models: <u>https://aka.ms/beats</u>

# BEATs where Audio Pre-Training with Acoustic Tokenizers

Unlike the previous methods that employ **continuous feature reconstruction loss** for audio pre-training, we explore audio pre-training with **discrete label prediction loss** for **the first time** and outperform previous **state-of-the-art** models by **a large margin** with **much less training data** and **model parameters**.





- Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and audio domains.
- SSL with **discrete label prediction loss** is widely adopted for **language**, **vision**, **speech** modalities, and shows better performance than **reconstruction loss**.



- Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and audio domains.
- SSL with **discrete label prediction loss** is widely adopted for **language**, **vision**, **speech** modalities, and shows better performance than **reconstruction loss**.
- Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to **abstract the high-level semantics** and **discard the redundant details**.



- Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and audio domains.
- SSL with **discrete label prediction loss** is widely adopted for **language**, **vision**, **speech** modalities, and shows better performance than **reconstruction loss**.
- The state-of-the-art audio SSL model still employ reconstruction loss for pre-training.



Audio-MAE: SOTA audio SSL model

- Self-Supervised Learning (SSL) has achieved great success in language, vision, speech, and audio domains.
- SSL with **discrete label prediction loss** is widely adopted for **language**, **vision**, **speech** modalities, and shows better performance than **reconstruction loss**.
- The state-of-the-art audio SSL model still employ reconstruction loss for pre-training.
- Questions:
  - 1. Would **discrete label prediction** be a better choice for audio pre-training?
  - 2. How to **design the acoustic tokenizer** for semantic-rich discrete label generation?



**1. Humans understand audio** by extracting and clustering the high-level semantics instead of focusing on the low-level time-frequency details.



**1. Humans understand audio** by extracting and clustering the high-level semantics instead of focusing on the low-level time-frequency details.



2. Better audio modeling efficiency by encouraging the model to focus on the high-level semantics and discard the redundant details.

**1. Humans understand audio** by extracting and clustering the high-level semantics instead of focusing on the low-level time-frequency details.



- 2. Better audio modeling efficiency by encouraging the model to focus on the high-level semantics and discard the redundant details.
- 3. Advances the **unification of language, vision, speech, and audio pre-training**, which enables the possibility of building a foundation model across modalities with a single pre-training task.



- Audio property:
  - 1. Continuous signals.
  - 2. Wide variations of environmental events (human voices, nature sounds, musical beats)
  - 3. Each environmental events might have various durations in different occasions.



- Audio property:
  - 1. Continuous signals.
  - 2. Wide variations of environmental events (human voices, nature sounds, musical beats)
  - 3. Each environmental events might have various durations in different occasions.



• Can we use the **text tokenizer**?

- Audio property:
  - 1. Continuous signals.
  - 2. Wide variations of environmental events (human voices, nature sounds, musical beats)
  - 3. Each environmental events might have various durations in different occasions.



• Can we use the **speech tokenizer**?



- Audio property:
  - 1. Continuous signals.
  - 2. Wide variations of environmental events (human voices, nature sounds, musical beats)
  - 3. Each environmental events might have various durations in different occasions.



• Can we use the **visual tokenizer**?



### BEATs: an iterative audio pre-training framework

• An acoustic tokenizer and an audio SSL model are optimized by iterations.



## BEATs: an iterative audio pre-training framework

- An acoustic tokenizer and an audio SSL model are optimized by iterations.
- Each iteration:
  - 1. Generate **discrete labels** with the acoustic tokenizer



## BEATs: an iterative audio pre-training framework

- An acoustic tokenizer and an audio SSL model are optimized by iterations.
- Each iteration:
  - 1. Generate **discrete labels** with the acoustic tokenizer
  - 2. Optimize the **audio SSL model** with mask and discrete label prediction loss



# BEATs : an iterative audio pre-training framework

- An acoustic tokenizer and an audio SSL model are optimized by iterations.
- Each iteration:
  - 1. Generate **discrete labels** with the acoustic tokenizer
  - 2. Optimize the **audio SSL model** with mask and discrete label prediction loss
  - 3. Update the **acoustic tokenizer** with audio semantics distilled from the pre-trained or fine-tuned audio SSL model



# BEATs : an iterative audio pre-training framework

- An acoustic tokenizer and an audio SSL model are optimized by iterations.
- Each iteration:
  - 1. Generate **discrete labels** with the acoustic tokenizer
  - 2. Optimize the **audio SSL model** with mask and discrete label prediction loss
  - 3. Update the **acoustic tokenizer** with audio semantics distilled from the pre-trained or fine-tuned audio SSL model



- Cold start:
  - we use **random projection** as the acoustic tokenizer in the first iteration.

### BEATs : an iterative audio pre-training framework



## Comparing with the SOTA Single Models

• We gray-out the models and results with external datasets.



| Model                              | # Param | Data   | Audio |        |        | Speech |             |       |
|------------------------------------|---------|--------|-------|--------|--------|--------|-------------|-------|
|                                    |         |        | AS-2M | AS-20K | ESC-50 | KS1    | KS2         | ER    |
| No Pre-Training                    |         |        |       |        |        |        |             |       |
| PANN [Kong et al., 2020]           | 81M     | -      | 43.1  | 27.8   | 83.3   | -      | 61.8        | -     |
| ERANN [Verbitskiy et al., 2022]    | 55M     | -      | 45.0  | -      | 89.2   | -      | -           | -     |
| Out-of-domain Supervised Pre-Tra   | ining   |        |       |        |        |        |             |       |
| PSLA [Gong et al., 2021b]          | 14M     | IN     | 44.4  | 31.9   | -      | -      | 96.3        | -     |
| AST [Gong et al., 2021a]           | 86M     | IN     | 45.9  | 34.7   | 88.7   | 95.5   | 98.1        | 56.0  |
| MBT [Nagrani et al., 2021]         | 86M     | IN-21K | 44.3  | 31.3   | -      | -      | -           | -     |
| PaSST [Koutini et al., 2021]       | 86M     | IN     | 47.1  | -      | -      | -      | -           | -     |
| HTS-AT [Chen et al., 2022a]        | 31M     | IN     | 47.1  | -      | -      | -      | 98.0        | -     |
| Wav2CLIP [Wu et al., 2022]         | 74M     | TI+AS  | -     | -      | 86.0   | -      | -           | -     |
| AudioCLIP [Guzhov et al., 2022]    | 93M     | TI+AS  | 25.9  | -      | 96.7   | -      | -           | -     |
| In-domain Supervised Pre-Trainin   | g       |        |       |        |        |        |             |       |
| PANN [Kong et al., 2020]           | 81M     | AS     | -     | -      | 94.7   | -      | -           | -     |
| ERANN [Verbitskiy et al., 2022]    | 55M     | AS     | -     | -      | 96.1   | -      | -           | -     |
| AST [Gong et al., 2021a]           | 86M     | IN+AS  | 45.9  | -      | 95.6   | -      | 97.9        | -     |
| PaSST [Koutini et al., 2021]       | 86M     | IN+AS  | 47.1  | -      | 96.8   | -      | -           | -     |
| HTS-AT [Chen et al., 2022a]        | 31M     | IN+AS  | 47.1  | -      | 97.0   | -      | -           | -     |
| CLAP [Elizalde et al., 2022]       | 190.8M  | TA     | -     | -      | 96.7   | -      | 96.8        | -     |
| Audio-MAE [Xu et al., 2022]        | 86M     | AS     | -     | -      | 97.4   | -      | -           | -     |
| Self-Supervised Pre-Training       |         |        |       |        |        |        |             |       |
| Wav2vec [Schneider et al., 2019]   | 33M     | LS     | -     | -      | -      | 96.2   | -           | 59.8  |
| Wav2vec 2.0 [Baevski et al., 2020] | 95M     | LS     | -     | -      | -      | 96.2*  | -           | 63.4* |
| SS-AST [Gong et al., 2022a]        | 89M     | AS+LS  | -     | 31.0   | 88.8   | 96.0   | 98.0        | 59.6  |
| MSM-MAE [Niizumi et al., 2022]     | 86M     | AS     | -     | -      | 85.6   | -      | 87.3        | -     |
| MaskSpec [Chong et al., 2022]      | 86M     | AS     | 47.1  | 32.3   | 89.6   | -      | 97.7        | -     |
| MAE-AST [Baade et al., 2022]       | 86M     | AS+LS  | -     | 30.6   | 90.0   | 95.8   | 97.9        | 59.8  |
| Audio-MAE [Xu et al., 2022]        | 86M     | AS     | 47.3  | 37.1   | 94.1   | 96.9   | <b>98.3</b> | -     |
| data2vec [Baevski et al., 2022]    | 94M     | AS     | -     | 34.5   | -      | -      | -           | -     |
| Audio-MAE Large [Xu et al., 2022]  | 304M    | AS     | 47.4  | 37.6   | -      | -      | -           | -     |
| CAV-MAE [Gong et al., 2022b]       | 86M     | AS+IN  | 44.9  | 34.2   | -      | -      | -           | -     |
| Ours                               |         |        |       |        |        |        |             |       |
| BEATS <sub>iter1</sub>             | 90M     | AS     | 47.9  | 36.0   | 94.0   | 98.0   | 98.3        | 65.9  |
| BEATS <sub>iter2</sub>             | 90M     | AS     | 48.1  | 38.3   | 95.1   | 97.7   | <b>98.3</b> | 66.1  |
| BEATS <sub>iter3</sub>             | 90M     | AS     | 48.0  | 38.3   | 95.6   | 97.7   | <b>98.3</b> | 64.5  |
| BEATS <sub>iter3+</sub>            | 90M     | AS     | 48.6  | 38.9   | 98.1   | 98.1   | 98.1        | 65.0  |

#### Comparing with the SOTA Ensemble Models

| Model                        | SL Data | AS-2M |
|------------------------------|---------|-------|
| PSLA [Gong et al., 2021b]    | IN+AS   | 47.4  |
| AST [Gong et al., 2021a]     | IN+AS   | 48.5  |
| HTS-AT [Chen et al., 2022a]  | IN+AS   | 48.7  |
| PaSST [Koutini et al., 2021] | IN+AS   | 49.6  |
| BEATS (5 models)             | AS      | 50.4  |
| BEATS (10 models)            | AS      | 50.6  |



#### Audio Classification on AudioSet



#### Audio Classification on ESC-50



#### Comparing Different Pre-Training Targets via Visualization



#### **Broader Impacts**

• Powers all the top 5 winning systems in DCASE 2023 Sound Event Detection Challenge

| Rank | Submission<br>code<br>(PSDS 1) | Submission<br>code (PSDS 2)    | Technical<br>Report | Ranking score v<br>(Evaluation dataset) | PSDS 1 .<br>(Evaluation dataset) ∎∎ | PSDS 2<br>(Evaluation dataset) 📲 |
|------|--------------------------------|--------------------------------|---------------------|-----------------------------------------|-------------------------------------|----------------------------------|
| 1    | Kim_GIST-HanwhaVision_task4a_2 | Kim_GIST-HanwhaVision_task4a_3 | D                   | 1.68                                    | <b>0.591</b> (0.574 - 0.611)        | <b>0.835</b> (0.826 - 0.846)     |
| 2    | Zhang_IOA_task4a_6             | Zhang_IOA_task4a_7             | Ð                   | 1.63                                    | 0.562 (0.552 - 0.575)               | 0.830 (0.820 - 0.842)            |
| 3    | Wenxin_TJU_task4a_6            | Wenxin_TJU_task4a_6            | D                   | 1.61                                    | 0.546 (0.536 - 0.556)               | 0.831 (0.823 - 0.842)            |
| 4    | Xiao_FMSG_task4a_4             | Xiao_FMSG_task4a_4             | D                   | 1.60                                    | 0.551 (0.543 - 0.562)               | 0.813 (0.802 - 0.827)            |
| 4    | Guan_HIT_task4a_3              | Guan_HIT_task4a_4              | D                   | 1.60                                    | 0.526 (0.513 - 0.539)               | 0.855 (0.844 - 0.867)            |
| 5    | Chen_CHT_task4a_2              | Chen_CHT_task4a_2              | D                   | 1.58                                    | 0.563 (0.550 - 0.574)               | 0.779 (0.768 - 0.792)            |
| 6    | Li_USTC_task4a_6               | Li_USTC_task4a_6               | Ð                   | 1.56                                    | 0.546 (0.529 - 0.562)               | <b>0.783</b> (0.771 - 0.796)     |
| ,    | Liu_NSYSU_task4a_7             | Liu_NSYSU_task4a_7             | D                   | 1.55                                    | 0.521 (0.510 - 0.531)               | <b>0.813</b> (0.796 - 0.831)     |
| 3    | Cheimariotis_DUTH_task4a_1     | Cheimariotis_DUTH_task4a_1     | D                   | 1.53                                    | 0.516 (0.504 - 0.529)               | 0.796 (0.784 - 0.808)            |
| 9    | Baseline_BEATS                 | Baseline_BEATS                 |                     | 1.52                                    | 0.510 (0.496 - 0.523)               | 0.798 (0.782 - 0.811)            |
| 10   | Wang_XiaoRice_task4a_1         | Wang_XiaoRice_task4a_1         | Ð                   | 1.50                                    | 0.494 (0.477 - 0.510)               | <b>0.801</b> (0.789 - 0.815)     |
| 11   | Lee_CAUET_task4a_1             | Lee_CAUET_task4a_2             | D                   | 1.28                                    | 0.425 (0.415 - 0.440)               | 0.674 (0.661 - 0.690)            |
| 12   | Liu_SRCN_task4a_4              | Liu_SRCN_task4a_4              | D                   | 1.25                                    | 0.412 (0.400 - 0.424)               | 0.663 (0.652 - 0.676)            |
| 13   | Barahona_AUDIAS_task4a_2       | Barahona_AUDIAS_task4a_4       | D                   | 1.21                                    | 0.380 (0.361 - 0.406)               | 0.673 (0.652 - 0.700)            |
| 14   | Wu_NCUT_task4a_1               | Wu_NCUT_task4a_1               | Ð                   | 1.15                                    | 0.391 (0.379 - 0.405)               | 0.596 (0.584 - 0.610)            |
| 15   | Gan_NCUT_task4a_1              | Gan_NCUT_task4a_1              | D                   | 1.12                                    | <b>0.365</b> (0.353 - 0.377)        | 0.603 (0.589 - 0.617)            |
| 16   | Baseline                       | Baseline                       |                     | 1.00                                    | 0.327 (0.317 - 0.339)               | 0.538 (0.515 - 0.566)            |

Systems with BEATs

### **Broader Impacts**

- Powers all the top 5 winning systems in DCASE 2023 Sound Event Detection Challenge
- Powers the winning system in DCASE 2023 Automated Audio Captioning Challenge.





Wu et al. BEATs-based audio captioning model with instructor embedding supervision and ChatGPT mix-up

# Conclusion

- We propose **BEATs**, an iterative audio pre-training framework, which opens the door to audio pre-training with a **discrete label prediction loss**.
- We provide **effective acoustic tokenizers** to quantize continuous audio features into semantic-rich discrete labels.
- We achieve state-of-the-art results on several audio understanding benchmarks.
- The pre-trained/fine-tuned models and codes are released at <a href="https://aka.ms/beats">https://aka.ms/beats</a>.