On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters

Wonyeol Lee¹

Sejun Park²

Alex Aiken¹

¹Stanford University, USA ²Korea University, South Korea

Automatic Differentiation

• Automatic differentiation (AD)¹ refers to various algorithms for computing the derivative

 $\mathcal{D}P(x) \in \mathbb{R}^{m \times n}$ (when it exists)

of a program $P : \mathbb{R}^n \to \mathbb{R}^m$ at an input $x \in \mathbb{R}^n$.

Automatic Differentiation

• Automatic differentiation (AD)¹ refers to various algorithms for computing the derivative

 $\mathcal{D}P(x) \in \mathbb{R}^{m \times n}$ (when it exists)

of a program $P : \mathbb{R}^n \to \mathbb{R}^m$ at an input $x \in \mathbb{R}^n$.

• Backpropagation is an instance of AD widely used in ML.

```
TensorFlow Orevert Or
```


- - -

Correctness of AD

If P consists of differentiable functions, then

$$\mathcal{D}P(x)$$
 exists and $\mathcal{D}^{AD}P(x) = \mathcal{D}P(x)$ for all $x \in \mathbb{R}^n$.
 \checkmark output of AD on P at x

Correctness of AD

• If *P* consists of differentiable functions, then

$$\mathcal{D}P(x)$$
 exists and $\mathcal{D}^{AD}P(x) = \mathcal{D}P(x)$ for all $x \in \mathbb{R}^n$.

If P uses non-differentiable functions, then

 $\mathcal{D}P(x)$ might not exist or $\mathcal{D}^{AD}P(x) \neq \mathcal{D}P(x)$ for some $x \in \mathbb{R}^n$.

Correctness of AD

• If *P* consists of differentiable functions, then

$$\mathcal{D}P(x)$$
 exists and $\mathcal{D}^{AD}P(x) = \mathcal{D}P(x)$ for all $x \in \mathbb{R}^n$.

Prior work [Bolte+20, Lee+20, Huot+23, ...]

include ReLU, max, abs, ...

"piecewise analytic" include I
If P uses non-differentiable functions, then

 $\mathcal{D}P(x)$ might not exist or $\mathcal{D}^{AD}P(x) \neq \mathcal{D}P(x)$ for some $x \in \mathbb{R}^n$. only for measure zero (i.e., negligible)

Limitations of Prior Work

- In practice, inputs are not reals, but machine-representable numbers (e.g., floats).
- The set of machine-representable numbers \mathbb{M} is countable, so has measure zero in \mathbb{R} .

"piecewise analytic"

• If *P* uses non differentiable functions, then

 $\mathcal{D}P(x)$ might not exist or $\mathcal{D}^{AD}P(x) \neq \mathcal{D}P(x)$ for somaly $x \in \mathbb{R}^n$. only for measure zero (i.e., negligible)

Limitations of Prior Work

- In practice, inputs are not reals, but machine-representable numbers (e.g., floats).
- The set of machine-representable numbers \mathbb{M} is countable, so has measure zero in \mathbb{R} .

AD can be incorrect for all $x \in \mathbb{M}^n$ and this is indeed possible! E.g., for $P = \frac{1}{|\mathbb{M}|} \sum_{c \in \mathbb{M}} (\operatorname{ReLU}(x - c) - \operatorname{ReLU}(-x + c)),$ $\mathcal{D}^{\operatorname{AD}} P(x) \neq \mathcal{D} P(x)$ for all $x \in \mathbb{M}$.

Our Goal

Study the correctness of AD when inputs are machine-representable numbers.

• We focus on programs $P : \mathbb{R}^n \to \mathbb{R}^m$ that represent neural networks:

$$w \mapsto P(w).$$

parameters of a network

Our Goal

Study the correctness of AD when inputs are machine-representable numbers.

• We focus on programs $P : \mathbb{R}^n \to \mathbb{R}^m$ that represent neural networks:

$$w \mapsto P(w).$$

• We study two sets of parameters on which AD can be incorrect:

Our Main Results

For any neural network *P* with ReLU activations and "bias parameters":

<u>Theorem</u> The incorrect set is always empty, i.e.,

 $|\mathrm{inc}(P)|=0.$

Our Main Results

For any neural network *P* with ReLU activations and "bias parameters":

<u>Theorem</u> The incorrect set is always empty, i.e.,

 $|\mathrm{inc}(P)|=0.$

<u>Theorem</u> The density of the non-differentiable set is bounded by

 $\frac{|\mathrm{ndf}(P)|}{|\mathbb{M}^n|} \leq \frac{(\# \operatorname{ReLUs} \operatorname{in} P)}{|\mathbb{M}|}.$

This bound is tight up to a constant multiplicative factor.

<u>Theorem</u> On the non-differentiable set, AD computes a generalized derivative.

Our Main Results

piecewise analytic

For any neural network *P* with ReLU activations and "bias parameters": possibly without

<u>Theorem</u> The incorrect set is always empty, i.e.,

- We prove additional results such as:
 - Simple necessary & sufficient condition for deciding non-differentiability.

More

The

The

For more details, read our paper and come to our poster session!