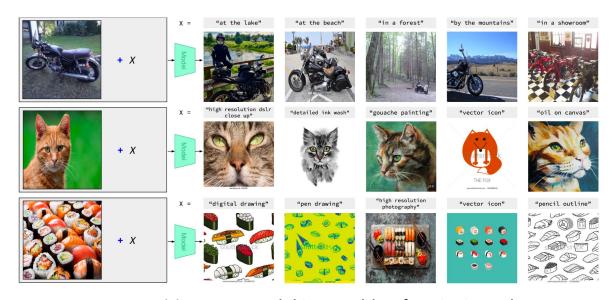
Grounding Language Models to Images for Multimodal Inputs and Outputs

Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried ICML 2023

Can we ground text-only LLMs to consume and produce visual data?

FROMAGE

<u>Frozen Retrieval Over Multimodal Data for Autoregressive Generation</u> <u>jykoh.com/fromage</u>



Concept composition. Our model is capable of retrieving relevant images conditioned on multi-modal context inputs.

Grounding Language Models to Images for Multimodal Generation (ivkoh.com/fromage)

Multi-modal dialogue. Green bubbles represent model generated outputs, grey bubbles represent user input.

FROMAGe

<u>Frozen Retrieval Over Multimodal Data for Autoregressive Generation</u>

Leverage the learnt abilities of pre-trained text-only LLMs

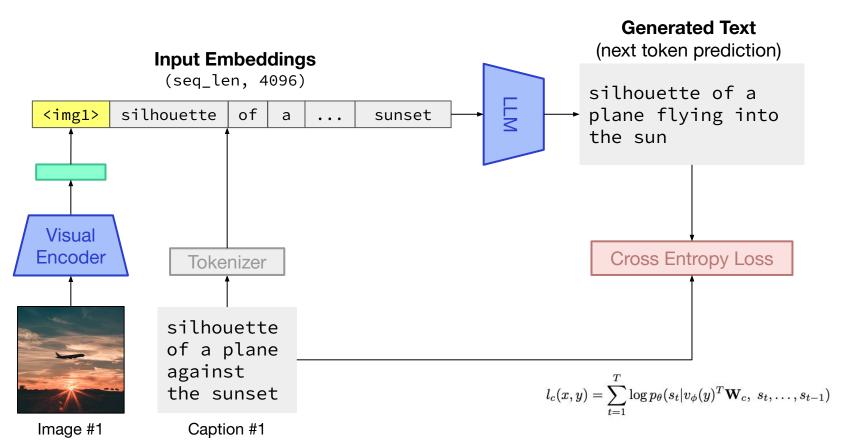
- In-context learning
- Sensitivity to input prompts
- Generate long and coherent dialogue

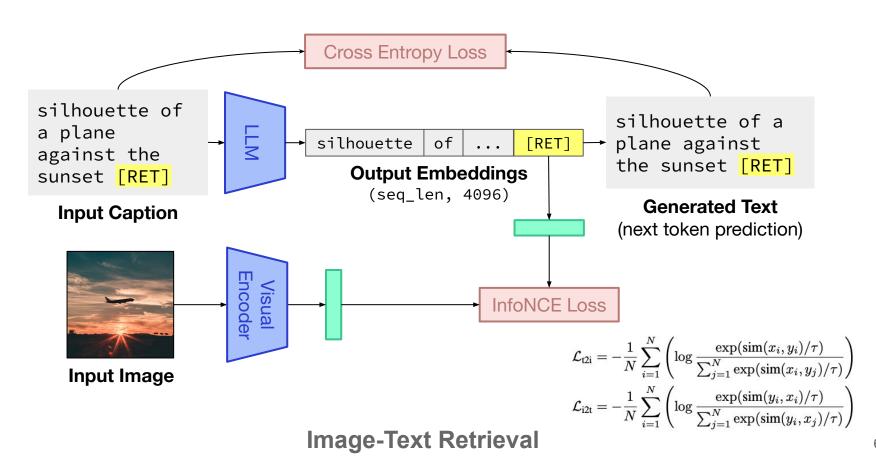
Model agnostic

- We use a 6.7B LLM (<u>past the scale necessary for generalization</u> to larger models)
- o Can (in principle) be applied to any larger model, and any stronger LLM released in the future

Simple and resource efficient

- We train just 3 linear layers to adapt a text-only LLM for <u>image captioning</u> + <u>image retrieval</u>
- FROMAGe is trained on a single A6000 GPU in 24 hours

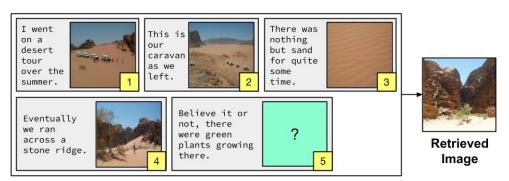




Quantitative Evaluations

1) Contextual image retrieval

- Given a Visual Story, retrieve the correct image
- FROMAGe is more sensitive to context
- CLIP gets worse with more context



Input Context

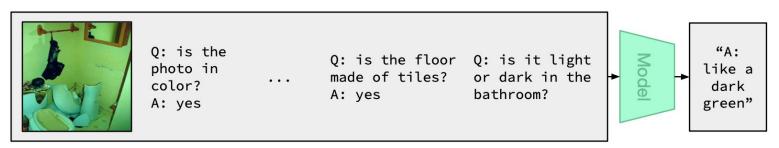
Model	Inputs	R@1	R@5	R@10		
CLIP ViT-L/14 FROMAGe	1 caption	11.9 9.0	25.5 21.1	32.2 28.7		
CLIP ViT-L/14 FROMAGe	5 captions	5.9 10.4	19.5 23.8	28.0 31.7		
BLIP [†]	5 captions	6.2	16.8	23.4		
CLIP ViT-L/14 [†]	5 captions	8.8	22.3	29.8		
FROMAGe †	5 captions	11.6	24.7	32.8		
CLIP ViT-L/14	5 captions, 4 images	2.4	21.3	34.0		
FROMAGe † 5 captions, 4 images		15.6	36.5	45.8		

Table 1. Recall@k on zero-shot contextual image retrieval of the last image in Visual Storytelling (Huang et al., 2016). Numbers in **bold** indicate best scores for a particular set of inputs. † indicates retrieval over images not previously seen in the story sequence.

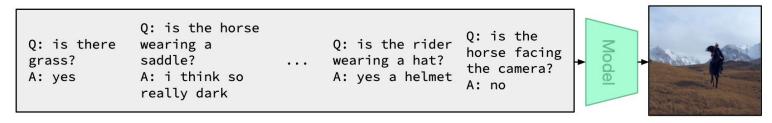
Quantitative Evaluations

2) Visual Dialogue

o IT2T: Answer a question about the image given past dialogue discussing it



T2I: Retrieve the correct image given a series of dialogue about it



Quantitative Evaluations

2) Visual Dialogue

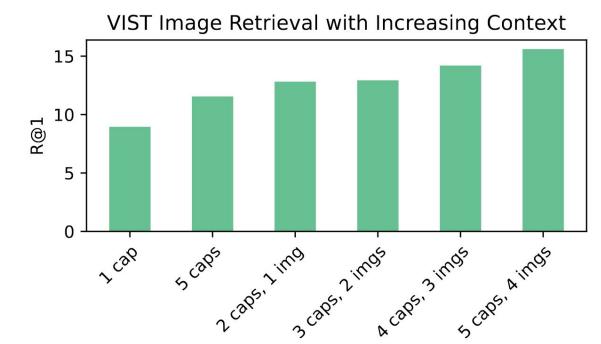
- IT2T: Answer a question about the image given past dialogue discussing it
- **T2I:** Retrieve the correct image given a series of dialogue about it

			IT2T			T2I				
Model	Trainable Params	Dataset Size	NDCG	MRR	R@1	R@5	R@10	R@1	R@5	R@10
ViLBERT (Lu et al., 2019)	114M	3.1M	11.6	6.9	2.6	7.2	11.3	=	-	-
CLIP ViT-L/14 (Radford et al., 2021)	300M	400M	10.9	8.5	3.1	8.7	15.9	17.7	38.9	50.2
Flamingo (Alayrac et al., 2022)	10.2B	1.8B	52.0	_	_	_	_	Incapable		le
ESPER (Yu et al., 2022b)	4M	0.5M	22.3	25.7	14.6	-	-	Incapable		
FROMAGe (ours)	5.5M	3.1M	16.5	22.0	17.6	20.1	25.1	20.8	44.9	56.0

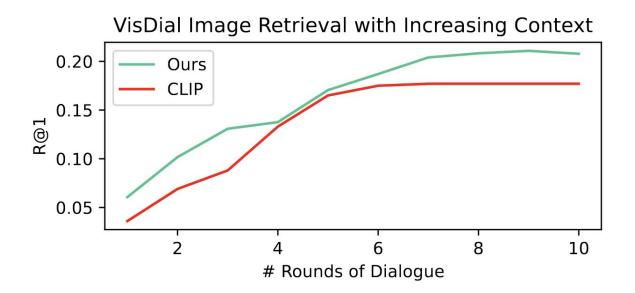
Table 2. Zero-shot results on Visual Dialog (Das et al., 2017), for image-and-text-to-text (IT2T) and text-to-image (T2I) retrieval. Unlike previous methods, FROMAGe is capable of generating free-form text interleaved with image outputs through text-to-image retrieval.

The Effect of Context

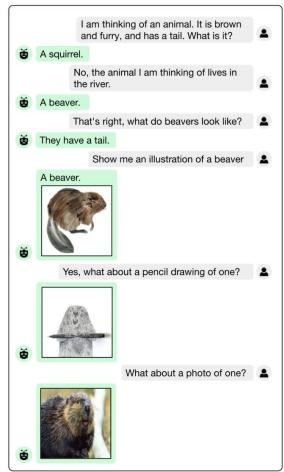
Multi-modal context is worth more than uni-modal context.

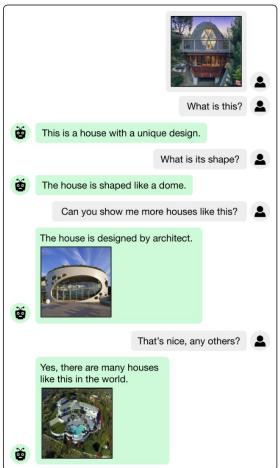


The Effect of Context



Beavers Unique Houses How to Make Macarons

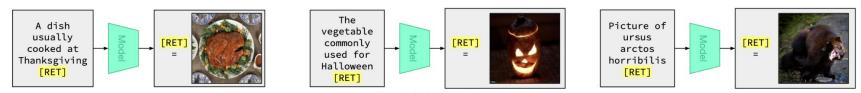




In-Context Learning and Other Abilities

Visual Storytelling

FROMAGe can learn from in-context examples to generate story-like image and text outputs.



World Knowledge

Our method can draw upon knowledge learnt outside of CC3M (through large scale text pretraining of the frozen LLM) to return valid image outputs.

Interleaved Text-to-Image Composition

Our model can transform a sequence of text inputs into text-and-image outputs. It can do coreferencing to select the appropriate images.

Thanks!

jykoh@cmu.edu jykoh.com/fromage