Approximately Optimal Core Shapes for Tensor Decompositions

Mehrdad Ghadiri ${ }^{1}$ Matthew Fahrbach ${ }^{2}$
Gang Fu ${ }^{2}$ Vahab Mirrokni ${ }^{2}$
${ }^{1}$ Georgia Institute of Technology
${ }^{2}$ Google Research

ICML 2023

Tucker Decomposition

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{l_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

Tucker Decomposition

$$
\mathbf{A}^{(2)}
$$

\mathcal{T}

$A^{(3)}$

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

$$
t_{i_{1} i_{2} \ldots i_{N}} \approx \widehat{t}_{i_{1} i_{2} \ldots i_{N}} \stackrel{\text { def }}{=} \sum_{r_{1}=1}^{R_{1}} \ldots \sum_{r_{N}=1}^{R_{N}} g_{r_{1} r_{2} \ldots r_{N}} a_{i_{1} r_{1}}^{(1)} \cdots a_{i_{N} r_{N}}^{(N)}
$$

Problem: Core Shape Selection

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{l_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

$$
t_{i_{1} i_{2} \ldots i_{N}} \approx \widehat{t}_{i_{1} i_{2} \ldots i_{N}} \stackrel{\text { def }}{=} \sum_{r_{1}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} g_{r_{1} r_{2} \ldots r_{N}} a_{i_{1} r_{1}}^{(1)} \cdots a_{i_{N} r_{N}}^{(N)}
$$

Problem: Core Shape Selection

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{1_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

$$
t_{i_{1} i_{2} \ldots i_{N}} \approx \widehat{t}_{i_{1} i_{2} \ldots i_{N}} \stackrel{\text { def }}{=} \sum_{r_{1}=1}^{R_{1}} \ldots \sum_{r_{N}=1}^{R_{N}} g_{r_{1} r_{2} \ldots r_{N}} a_{i_{1} r_{1}}^{(1)} \cdots a_{i_{N} r_{N}}^{(N)}
$$

Tucker decomposition goal: $\min _{\mathcal{G}, \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}}\|\mathcal{T}-\hat{\mathcal{T}}\|_{\mathrm{F}}^{2}$

Problem: Core Shape Selection

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{1_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

$$
t_{i_{1} i_{2} \ldots i_{N}} \approx \widehat{t}_{i_{1} i_{2} \ldots i_{N}} \stackrel{\text { def }}{=} \sum_{r_{1}=1}^{R_{1}} \ldots \sum_{r_{N}=1}^{R_{N}} g_{r_{1} r_{2} \ldots r_{N}} a_{i_{1} r_{1}}^{(1)} \cdots a_{i_{N} r_{N}}^{(N)}
$$

Tucker decomposition goal: $\min _{\mathcal{G}, \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}}\|\mathcal{T}-\hat{\mathcal{T}}\|_{\mathrm{F}}^{2}$

$$
\|\boldsymbol{T}-\hat{\boldsymbol{T}}\|_{\mathrm{F}}^{2}=\sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}}\left(t_{i_{1} i_{2} \ldots i_{N}}-\widehat{t}_{i_{1} i_{2} \ldots i_{N}}\right)^{2}
$$

Problem: Core Shape Selection

Tucker decomposition writes a tensor $\mathcal{T} \in \mathbb{R}^{l_{1} \times \cdots \times I_{N}}$ of order N as product of N factor matrices, $\mathbf{A}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$ for $n \in[N]$, and a core tensor $\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}}$.

$$
t_{i_{1} i_{2} \ldots i_{N}} \approx \widehat{t}_{i_{1} i_{2} \ldots i_{N}} \stackrel{\text { def }}{=} \sum_{r_{1}=1}^{R_{1}} \cdots \sum_{r_{N}=1}^{R_{N}} g_{r_{1} r_{2} \ldots r_{N}} a_{i_{1} r_{1}}^{(1)} \cdots a_{i_{N} r_{N}}^{(N)}
$$

Tucker decomposition goal: $\min _{\mathcal{G}, \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}}\|\mathcal{T}-\hat{\mathcal{T}}\|_{\mathrm{F}}^{2}$

$$
\|\mathcal{T}-\hat{\mathcal{T}}\|_{\mathrm{F}}^{2}=\sum_{i_{1}=1}^{I_{1}} \cdots \sum_{i_{N}=1}^{I_{N}}\left(t_{i_{1} i_{2} \ldots i_{N}}-\widehat{t}_{i_{1} i_{2} \ldots i_{N}}\right)^{2}
$$

Problem Statement (Informal)

How to select R_{1}, \ldots, R_{n} ? i.e., the shape of the tensor \mathcal{G}.

Importance of Shape of Core Tensor

Figure: Pareto frontier of core shapes $\mathbf{r} \in[20]^{3}$ for hyperspectral tensor $\mathcal{X} \in \mathbb{R}^{1024 \times 1344 \times 33}$. RRE is $L(\mathcal{X}, \mathbf{r}) /\|\mathcal{X}\|_{\mathrm{F}}^{2}$. RRE-greedy adds to dimensions of \mathbf{r} greedily. HOSVD-IP is our approach that uses integer programming and a surrogate packing problem on higher-order singular values.

Formal Statement of Problem

For $\mathbf{r}=\left(R_{1}, \ldots, R_{N}\right)$

Formal Statement of Problem

For $\mathbf{r}=\left(R_{1}, \ldots, R_{N}\right)$ with $R_{1} \in\left[I_{1}\right], \ldots, R_{N} \in\left[I_{N}\right]$,

Formal Statement of Problem

For $\mathbf{r}=\left(R_{1}, \ldots, R_{N}\right)$ with $R_{1} \in\left[I_{1}\right], \ldots, R_{N} \in\left[I_{N}\right]$, we define

$$
L(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \min _{\boldsymbol{\mathcal { G }} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}, \mathbf{A}^{(1)} \in \mathbb{R}_{1} \times R_{1}, \ldots, \mathbf{A}^{(N)} \in \mathbb{R}^{\prime} N \times R_{N}}}\left\|\boldsymbol{\mathcal { T }}-\boldsymbol{\mathcal { G }} \times{ }_{1} \mathbf{A}^{(1)} \times 2 \cdots \times_{N} \mathbf{A}^{(N)}\right\|_{\mathcal{F}}^{2}
$$

Formal Statement of Problem

For $\mathbf{r}=\left(R_{1}, \ldots, R_{N}\right)$ with $R_{1} \in\left[I_{1}\right], \ldots, R_{N} \in\left[I_{N}\right]$, we define

$$
L(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \min _{\mathcal{G} \in \mathbb{R}^{R_{1} \times \cdots \times R_{N}, \mathbf{A}^{(1)} \in \mathbb{R}_{1}^{1} \times R_{1}, \ldots, \mathbf{A}^{(N)} \in \mathbb{R}^{\prime} N \times R_{N}}}\left\|\boldsymbol{\mathcal { T }}-\boldsymbol{\mathcal { G }} \times{ }_{1} \mathbf{A}^{(1)} \times \times_{2} \cdots \times_{N} \mathbf{A}^{(N)}\right\|_{\mathcal{F}}^{2}
$$

Problem Statement (formal)

Given a tensor \mathcal{T} and a budget $B>0$,

$$
\begin{array}{ll}
\min & L(\mathcal{T}, \mathbf{r}) \\
\text { s.t. } & \sum_{n \in[N]} I_{n} R_{n}+\prod_{n \in[N]} R_{n} \leq B
\end{array}
$$

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.
- We alleviate this issue by using a proxy function that approximates $L(\mathcal{T}, \mathbf{r})$ within a factor of N.

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.
- We alleviate this issue by using a proxy function that approximates $L(\mathcal{T}, \mathbf{r})$ within a factor of N.

$$
\widetilde{L}(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \sum_{n=1}^{N} \sum_{i_{n}=R_{n}+1}^{I_{n}}\left(\sigma_{i_{n}}^{(n)}\right)^{2}
$$

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.
- We alleviate this issue by using a proxy function that approximates $L(\mathcal{T}, \mathbf{r})$ within a factor of N.

$$
\widetilde{L}(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \sum_{n=1}^{N} \sum_{i_{n}=R_{n}+1}^{I_{n}}\left(\sigma_{i_{n}}^{(n)}\right)^{2}
$$

- The constraint $\sum_{n \in[N]} I_{n} R_{n}+\prod_{n \in[N]} R_{n} \leq B$ is non-linear and non-convex.

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.
- We alleviate this issue by using a proxy function that approximates $L(\mathcal{T}, \mathbf{r})$ within a factor of N.

$$
\widetilde{L}(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \sum_{n=1}^{N} \sum_{i_{n}=R_{n}+1}^{I_{n}}\left(\sigma_{i_{n}}^{(n)}\right)^{2}
$$

- The constraint $\sum_{n \in[N]} I_{n} R_{n}+\prod_{n \in[N]} R_{n} \leq B$ is non-linear and non-convex.
- We use different splits of the budget between the two terms.

Challenges

- Computing $L(\mathcal{T}, \mathbf{r})$ for a given \mathbf{r} is an NP-hard problem.
- We alleviate this issue by using a proxy function that approximates $L(\mathcal{T}, \mathbf{r})$ within a factor of N.

$$
\widetilde{L}(\mathcal{T}, \mathbf{r}) \stackrel{\text { def }}{=} \sum_{n=1}^{N} \sum_{i_{n}=R_{n}+1}^{I_{n}}\left(\sigma_{i_{n}}^{(n)}\right)^{2}
$$

- The constraint $\sum_{n \in[N]} I_{n} R_{n}+\prod_{n \in[N]} R_{n} \leq B$ is non-linear and non-convex.
- We use different splits of the budget between the two terms.

$$
\begin{aligned}
& \sum_{n \in[N]} I_{n} R_{n} \leq B_{1} \\
& \prod_{n \in[N]} R_{n} \leq B-B_{1}
\end{aligned}
$$

Integer Linear Programming Formulation

$$
\begin{aligned}
\text { maximize } & \sum_{n=1}^{N} \sum_{i_{n}=1}^{I_{n}} p_{i_{n}}^{(n)} x_{i_{n}}^{(n)} \\
\text { subject to } & \sum_{n=1}^{N} \sum_{i_{n}=1}^{I_{n}} \log \left(i_{n}\right) x_{i_{n}}^{(n)} \leq \log \left(B_{1}\right) \\
& \sum_{n=1}^{N} \sum_{i_{n}=1}^{I_{n}} I_{n} i_{n} x_{i_{n}}^{(n)} \leq B-B_{1} \\
& \sum_{i_{n}=1}^{I_{n}} x_{i_{n}}^{(n)}=1 \quad \forall n \in[N] \\
& x_{i_{n}}^{(n)} \in\{0,1\} \quad \forall n \in[N], i_{n} \in\left[I_{n}\right]
\end{aligned}
$$

Our Results

(1) We show even solving the optimization problem for the proxy function is NP-hard.

Our Results

(1) We show even solving the optimization problem for the proxy function is NP-hard.
(2) We present a polynomial-time approximation scheme (PTAS) for optimizing the proxy function

Our Results

(1) We show even solving the optimization problem for the proxy function is NP-hard.
(2) We present a polynomial-time approximation scheme (PTAS) for optimizing the proxy function, i.e., for any fixed $\epsilon>0$, there is a polynomial time algorithm that finds a $(1+\epsilon)$-approximation.

Our Results

(1) We show even solving the optimization problem for the proxy function is NP-hard.
(2) We present a polynomial-time approximation scheme (PTAS) for optimizing the proxy function, i.e., for any fixed $\epsilon>0$, there is a polynomial time algorithm that finds a $(1+\epsilon)$-approximation.
(3) We give an $(1+\epsilon) \cdot N$ approximation algorithm for finding the optimal core shape for Tucker decomposition.

Experiments

