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Tucker Decomposition

≈

T G

A(1)

A(2)

A(3)

Tucker decomposition writes a tensor T ∈ RI1×···×IN of order N as product of N
factor matrices, A(n) ∈ RIn×Rn for n ∈ [N], and a core tensor G ∈ RR1×···×RN .

ti1i2...iN ≈ t̂i1i2...iN
def
=

R1∑
r1=1

· · ·
RN∑

rN=1

gr1r2...rNa
(1)
i1r1

· · · a(N)
iN rN
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Problem: Core Shape Selection

Tucker decomposition writes a tensor T ∈ RI1×···×IN of order N as
product of N factor matrices, A(n) ∈ RIn×Rn for n ∈ [N], and a core
tensor G ∈ RR1×···×RN .

ti1i2...iN ≈ t̂i1i2...iN
def
=

R1∑
r1=1

· · ·
RN∑

rN=1

gr1r2...rNa
(1)
i1r1

· · · a(N)
iN rN

Tucker decomposition goal: minG,A(1),...,A(N)∥T − T̂ ∥2F

∥T − T̂ ∥2F =

I1∑
i1=1

· · ·
IN∑

iN=1

(ti1i2...iN − t̂i1i2...iN )
2

Problem Statement (Informal)

How to select R1, . . . ,Rn? i.e., the shape of the tensor G.
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Importance of Shape of Core Tensor

Figure: Pareto frontier of core shapes r ∈ [20]3 for hyperspectral tensor
X ∈ R1024×1344×33. RRE is L(X , r)/∥X∥2F. RRE-greedy adds to dimensions of r
greedily. HOSVD-IP is our approach that uses integer programming and a
surrogate packing problem on higher-order singular values.
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Formal Statement of Problem

For r = (R1, . . . ,RN)

with R1 ∈ [I1], . . . ,RN ∈ [IN ], we define

L(T , r)
def
= min

G∈RR1×···×RN ,A(1)∈RI1×R1 ,...,A(N)∈RIN×RN

∥T − G ×1 A
(1) ×2 · · · ×N A(N)∥2F

Problem Statement (formal)

Given a tensor T and a budget B > 0,

min L(T , r)

s.t.
∑
n∈[N]

InRn +
∏
n∈[N]

Rn ≤ B
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Challenges

Computing L(T , r) for a given r is an NP-hard problem.

We alleviate this issue by using a proxy function that approximates
L(T , r) within a factor of N.

L̃(T , r)
def
=

N∑
n=1

In∑
in=Rn+1

(
σ
(n)
in

)2

The constraint
∑

n∈[N] InRn +
∏

n∈[N] Rn ≤ B is non-linear and
non-convex.

We use different splits of the budget between the two terms.∑
n∈[N]

InRn ≤ B1

∏
n∈[N]

Rn ≤ B − B1
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Integer Linear Programming Formulation

maximize
N∑

n=1

In∑
in=1

p
(n)
in

x
(n)
in

subject to
N∑

n=1

In∑
in=1

log(in)x
(n)
in

≤ log(B1)

N∑
n=1

In∑
in=1

Ininx
(n)
in

≤ B − B1

In∑
in=1

x
(n)
in

= 1 ∀n ∈ [N]

x
(n)
in

∈ {0, 1} ∀n ∈ [N], in ∈ [In]
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Our Results

1 We show even solving the optimization problem for the proxy function
is NP-hard.

2 We present a polynomial-time approximation scheme (PTAS) for
optimizing the proxy function, i.e., for any fixed ϵ > 0, there is a
polynomial time algorithm that finds a (1 + ϵ)-approximation.

3 We give an (1 + ϵ) · N approximation algorithm for finding the
optimal core shape for Tucker decomposition.
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Experiments
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