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Online Learning with Switching Costs

For round 


1.  The learner chooses (or plays) one of the  actions, denoted by 


2.  The learner suffers the loss of the chosen action, which is determined by 
the (oblivious) adversary; The learner additionally suffers one unit of loss 
(i.e., switching cost) if  

3.  The learner receives some feedback associated with the losses at this 
round


4.  The learner uses the feedback to update her policy

t = 1,…, T :

K Xt

Xt ≠ Xt−1
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Key Question:
How do extra observations help 
improve the regret in general?
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Extra observations do not help 
until the amount is large enough
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An Interesting Phase Transition

Lower bound: Multi-scale random walk [Dekel et al., 13]

Upper bound: Instructive to study a different setup (to be introduced)
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Key Questions:
1.Is this lower bound tight with 

switching costs?
2.What is the best upper bound 

we can achieve?
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Adding switching costs does not 
increase the minimax regret rate
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