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Well-Generalized Models

←SGD→

↑
Other Algorithms
e.g. Full-batch GD



Natural Selection = Selection by Practitioners
Leaves = Well-Generalized Models (goal)
Giraffes = Learning Algorithms

Giraffes w/ long necks = SGD (and its variants)
Long neck = ?

Implicit Regularization in SGD!

Q. What are the advantageous features of SGD to find well-generalized
models?

A. Implicit Regularization in SGD!
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At the Edge of Stability [CKL+21],

2
η
≈ ∥H∥

≈ ∥G∥ = ⟨λ∗∥J∥2⟩
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↑
Gauss-Newton Approximation
H := ⟨∇2

θℓ⟩
G := ⟨∇θz∇2

zℓ∇θz
⊤⟩ = ⟨JMJ⊤⟩

J := ∇θz
M := ∇2

zℓ
where ⟨·⟩ = ED[·]
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↑
Our Main Theorem

J := ∇θz
↓



At the Edge of Stability [CKL+21],

2
η
≈ ∥H∥ ≈ ∥G∥ = ⟨λ∗∥J∥2⟩

λ∗ controls the effectiveness of IJR (high λ∗ ⇒ low ∥J∥2).

λ∗ is bounded above by the norm ∥M∥.
The lower the norm ∥M∥ ↓, the weaker the regularization effect ↓.
The norm ∥M∥ acts as an adaptive regularization weight.
How does ∥M∥ evolve during training?
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Implicit Jacobian Regularization

Weighted with Impurity of Probability Output
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M := ∇2
zℓ = diag(p)− pp⊤

p(1) is the proability of the most probable class.

Theorem (∥M∥ as Impurity of Probability Output)

1
2
Gini(p(1))

lower bound

≤ ∥M∥ ≤
upper bound

min(p(1),Gini(p(1)))
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Figure: Inverted U-shaped curve of evolution of ∥M∥
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Active Regularization Period (ARP)

I beginning → not at the Edge of Stability yet.
II early (ARP)→ high impurity→ strong regularization (IJR)
III later → low impurity → weak regularization (IJR)

Figure: Dark orange color indicates a high impurity ⟨λ(1)⟩.
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More in the Paper ...

Explicit Jacobian Regularization (two-step update like SAM
[FKM+21])
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The End
sungyoonlee@hanyang.ac.kr

Lee, Park, Lee Implicit Jacobian Regularization 10 / 11



References
[CKL+21] Jeremy Cohen et al. “Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability”. In:

International Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=jh-rTtvkGeM.

[FKM+21] Pierre Foret et al. “Sharpness-aware Minimization for Efficiently Improving Generalization”. In: International
Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=6Tm1mposlrM.

Lee, Park, Lee Implicit Jacobian Regularization 11 / 11

https://openreview.net/forum?id=jh-rTtvkGeM
https://openreview.net/forum?id=6Tm1mposlrM

	Implicit Jacobian Regularization  Weighted with Impurity of Probability Output 
	Implicit Jacobian Regularization  Weighted with Impurity of Probability Output 
	References

