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Natural Selection = Selection by Practitioners
Leaves = Well-Generalized Models (goal)
Giraffes = Learning Algorithms

Giraffes w/ long necks = SGD (and its variants)

Long neck =7

Q. What are the advantageous features of SGD to find well-generalized
models?
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Natural Selection = Selection by Practitioners
Leaves = Well-Generalized Models (goal)
Giraffes = Learning Algorithms

Giraffes w/ long necks = SGD (and its variants)

Long neck = Implicit Regularization in SGD!

Q. What are the advantageous features of SGD to find well-generalized
models?
A. Implicit Regularization in SGD!
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Implicit Jacobian Regularization

Weighted with Impurity of Probability Output
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At the Edge of Stability [CKL+21],
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At the Edge of Stability [CKL+21],
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p IH]| ~ [IG]|
Gauss-Newton Approximation
H = (V3()
G = (VgzV2UNpz") = (JMJT)
J:= V@Z
M = V2/

where (-) = Ep[]
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At the Edge of Stability [CKL+21], J:=Vyz
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Our Main Theorem
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At the Edge of Stability [CKL+21],
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@ )" controls the effectiveness of [JR (high \* = low ).

T

Implicit Jacobian Regularization
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At the Edge of Stability [CKL+21],

2
y = IHl~ el = & 111%)

@ )" controls the effectiveness of [JR (high \* = low ).

@ )\ is bounded above by the norm || V||

M = V3¢
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At the Edge of Stability [CKL+21],

2
y = IHl~ el = & 111%)

A" controls the effectiveness of |JR (high \* = low )-
A" is bounded above by the norm [|//]].

The lower the norm || M| |, the weaker the regularization effect |.

The norm || V|| acts as an adaptive regularization weight.
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At the Edge of Stability [CKL+21],

2
y = IHl~ el = & 111%)

A" controls the effectiveness of |JR (high \* = low )-
A" is bounded above by the norm [|//]].
The lower the norm || M| |, the weaker the regularization effect |.

The norm || V|| acts as an adaptive regularization weight.

How does ||| evolve during training?
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Implicit Jacobian Regularization

Weighted with Impurity of Probability Output
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M := V2t = diag(p) — pp"
p(1) is the proability of the most probable class.

Theorem (||M|| as Impurity of Probability Output)

1 upper bound
5Gini(py) < M|l < min(pq), Gini(p()))

lower bound
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Figure: Inverted U-shaped curve of evolution of || M||
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M := V2t = diag(p) — pp"
p(1) is the proability of the most probable class.

Theorem (||M|| as Impurity of Probability Output)

upper bound
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Figure: Inverted U-shaped curve of evolution of || M||
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Active Regularization Period (ARP)

I — not at the Edge of Stability yet.
Il early (ARP) — high impurity — strong regularization (I1JR)
1] — low impurity — weak regularization (IJR)
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Figure: Dark orange color indicates a high impurity (A(})).

Lee, Park, Lee Implicit Jacobian Regularization 8 /11



More in the Paper ...

e Explicit Jacobian Regularization (two-step update like SAM
[FKM+21])
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The End
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