The Role of Entropy and Reconstruction for Multi-View Self-Supervised Learning

Borja Rodríguez-Gálvez, Arno Blaas, Pau Rodríguez, Adam Goliński, Xavier Suau, Jason Ramapuram, Dan Busbridge, Luca Zappella ICML 2023

Motivation: MVSSL progressing rapidly

Motivation: But poorly understood theoretically

- Lens of Information Theory
∇ Some contrastive MVSSL methods optimize InfoNCE, a lower bound on the Mutual Information (MI)
? What about the other MVSSL methods?

Background: Multi-view self-supervised learning (MVSSL)

Background: Multi-view self-supervised learning (MVSSL)

Image X

Background: Multi-view self-supervised learning (MVSSL)

View V_{2}

Background: Multi-view self-supervised learning (MVSSL)

Background: Multi-view self-supervised learning (MVSSL)

Background: MVSSL families

Background: MVSSL families

Contrastive methods
SimCLR, CMC, MoCo

Background: MVSSL families

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Background: MVSSL families

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Prior work: What role does MI optimization play in MVSSL?

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Prior work: What role does MI optimization play in MVSSL?

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Some optimize $I\left(Z_{1} ; Z_{2}\right)$

Prior work: What role does MI optimization play in MVSSL?

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Analysis: Using a different bound on MI w.r.t. prior works

$$
\begin{aligned}
I\left(Z_{1} ; Z_{2}\right) & =H\left(Z_{2}\right)-H\left(Z_{2} \mid Z_{1}\right) \\
& \geq H\left(Z_{2}\right)-\mathbb{E}_{Z_{1}, Z_{2}}\left[-\log q_{Z_{2} \mid Z_{1}}\left(Z_{2}\right)\right]:=I_{E R}\left(Z_{1} ; Z_{2}\right)
\end{aligned}
$$

Analysis: Using a different bound on MI w.r.t. prior works

$$
\begin{aligned}
I\left(Z_{1} ; Z_{2}\right) & =H\left(Z_{2}\right)-H\left(Z_{2} \mid Z_{1}\right) \\
& \geq H\left(Z_{2}\right)-\mathbb{E}_{Z_{1}, Z_{2}}\left[-\log q_{Z_{2} \mid Z_{1}}\left(Z_{2}\right)\right]:=I_{E R}\left(Z_{1} ; Z_{2}\right)
\end{aligned}
$$

- Entropy: How much information can be learnt

Analysis: Using a different bound on MI w.r.t. prior works

$$
\begin{aligned}
I\left(Z_{1} ; Z_{2}\right) & =H\left(Z_{2}\right)-H\left(Z_{2} \mid Z_{1}\right) \\
& \geq H\left(Z_{2}\right)-\mathbb{E}_{Z_{1}, Z_{2}}\left[-\log q_{Z_{2} \mid Z_{1}}\left(Z_{2}\right)\right]:=I_{E R}\left(Z_{1} ; Z_{2}\right)
\end{aligned}
$$

- Entropy: How much information can be learnt
- Reconstruction: How much information is learnt

Theoretical analysis

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Theoretical analysis

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Some optimize $I\left(Z_{1} ; Z_{2}\right)$ exactly, some not exactly

Theoretical analysis

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Distillation-based methods
BYOL, DINO

Some optimize $I\left(Z_{1} ; Z_{2}\right)$ exactly, some not exactly

Optimize $I\left(Z_{1} ; Z_{2}\right)$ exactly

Theoretical analysis

Contrastive methods
SimCLR, CMC, MoCo

Clustering-based methods
SwAV, DeepCluster

Optimize $I\left(Z_{1} ; Z_{2}\right)$ exactly

Distillation-based methods BYOL, DINO

Maximize reconstruction, but the entropy is only maintained stable

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

Empirical results: We can add entropy optimization explicitly

$$
\dot{\omega}
$$

