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Motivation: MVSSL progressing rapidly

… and many more



Motivation: But poorly understood theoretically

🔎  Lens of Information Theory 

✅  Some contrastive MVSSL methods optimize InfoNCE, a lower bound 
on the Mutual Information (MI) 

❓ What about the other MVSSL methods?
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Figure 1. The MVSSL prototypes. An image X is transformed with augmentations t to generate two views V and projections Z. Dashed
and dotted lines indicate loss functions and optional relationships between variables respectively. Top: Identical branches: Parameters ✓
are identical across branches and the loss is symmetric. Bottom: Asymmetric branches: Parameters ✓, ⇠ across branches are different and
the loss is asymmetric. Left: The projections Z are not further processed. Right: The projections Z are processed into auxiliary discrete
variables W , potentially using another variable C. Parameters ✓, ⇠ are optimized such that Z are predictive of the other branch’s W .

guished by how they define the negative pairs. Most of these
methods are derived from two directions: the metric learn-
ing literature (Sohn, 2016), and the InfoNCE objective
(Oord et al., 2018), which is a lower bound on the mutual
information between the projections I(Z1;Z2). We discuss
these methods in detail in Section 3.1. Clustering methods
cluster the projections formed by one branch and use the
resulting discrete cluster assignments as targets for the other
branch by optimizing a cross-entropy loss (Caron et al.,
2018; Asano et al., 2019; Caron et al., 2020). Distillation-
based methods design the two branches asymmetrically,
using one branch’s projections as targets for the other (Grill
et al., 2020; Chen & He, 2021; Caron et al., 2021). The two
branches, referred to as teacher and student branches, differ.
Common differences include gradients being computed only
by the student (stop-grad), teacher’s parameters being set
via an exponential moving average of the student’s, and an
additional predictor network for the student.

Mutual information lower bounds Estimating MI is
fundamentally difficult (McAllester & Stratos, 2020) and
for gradient-based representation learning, it is common
to rely on the gradients of a lower bound on MI without
estimating MI directly (Poole et al., 2019). In this work,
the core quantity of interest is the MI between MVSSL
projections I(Z1;Z2). Two MI lower bounds that can be
used to optimize this quantity are InfoNCE and ER.

InfoNCE (Oord et al., 2018; Poole et al., 2019) is a lower
bound on MI. In MVSSL, the is MI between the the projec-
tions Z1, Z2. It is estimated from a sequence of i.i.d. sam-
ples of pairs (Z(1:k)

1 , Z
(1:k)
2 ) from the joint density pZ1,Z2 :
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where f(·, ·) is a scoring similarity between vectors, e.g.,
cosine similarity. Many contrastive methods use it as a loss
function in the original or slightly different forms depending
on negative sample choice. We discuss the MI maximization
in this class of methods in detail in Section 3.1.

The ER bound is a long standing result in information the-
ory (Gallager, 1968). It can be derived by considering a
tractable reconstruction density qZ2|Z1

that for MVSSL cor-
responds to a choice of a similarity function:

I(Z1;Z2)=E

log

qZ2|Z1
(Z2)

pZ2(Z2)

�
+E[

�0z }| {
DKL(pZ2|Z1

kqZ2|Z1
)]

�H(Z2)+E[log qZ2|Z1
(Z2)] :=IER(Z1;Z2). (2)

In the MVSSL setting, qZ2|Z1
is a design choice and we are

interested in optimizing the parameters of f✓ � ⇡✓ such that
the resulting density pZ1,Z2 maximizes IER(Z1;Z2). The
density pZ1,Z2 implicitly results from sampling inputs X ,
possibly transforming them via stochastic transformations t,
and then deterministically transforming them through the en-
coder f✓ � ⇡✓ to form Z. The term E[DKL(pZ2|Z1

kqZ2|Z1
)]

determines the magnitude of the gap of the IER bound.

The term reconstruction originates from information theory.
It is often concerned with reconstructing signal from a com-
pressed code and is equal to �H(Z2|Ẑ2), where Ẑ2 is a RV
such that Z2 � Z1 � Ẑ2 is a Markov chain. We find it also
more appropriate to reason about MVSSL, as for methods in
the right column of Figure 1, Z1 and W2 belong to different
spaces and hence the term similarity does not apply.
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Figure 1. The MVSSL prototypes. An image X is transformed with augmentations t to generate two views V and projections Z. Dashed
and dotted lines indicate loss functions and optional relationships between variables respectively. Top: Identical branches: Parameters ✓
are identical across branches and the loss is symmetric. Bottom: Asymmetric branches: Parameters ✓, ⇠ across branches are different and
the loss is asymmetric. Left: The projections Z are not further processed. Right: The projections Z are processed into auxiliary discrete
variables W , potentially using another variable C. Parameters ✓, ⇠ are optimized such that Z are predictive of the other branch’s W .

guished by how they define the negative pairs. Most of these
methods are derived from two directions: the metric learn-
ing literature (Sohn, 2016), and the InfoNCE objective
(Oord et al., 2018), which is a lower bound on the mutual
information between the projections I(Z1;Z2). We discuss
these methods in detail in Section 3.1. Clustering methods
cluster the projections formed by one branch and use the
resulting discrete cluster assignments as targets for the other
branch by optimizing a cross-entropy loss (Caron et al.,
2018; Asano et al., 2019; Caron et al., 2020). Distillation-
based methods design the two branches asymmetrically,
using one branch’s projections as targets for the other (Grill
et al., 2020; Chen & He, 2021; Caron et al., 2021). The two
branches, referred to as teacher and student branches, differ.
Common differences include gradients being computed only
by the student (stop-grad), teacher’s parameters being set
via an exponential moving average of the student’s, and an
additional predictor network for the student.

Mutual information lower bounds Estimating MI is
fundamentally difficult (McAllester & Stratos, 2020) and
for gradient-based representation learning, it is common
to rely on the gradients of a lower bound on MI without
estimating MI directly (Poole et al., 2019). In this work,
the core quantity of interest is the MI between MVSSL
projections I(Z1;Z2). Two MI lower bounds that can be
used to optimize this quantity are InfoNCE and ER.

InfoNCE (Oord et al., 2018; Poole et al., 2019) is a lower
bound on MI. In MVSSL, the is MI between the the projec-
tions Z1, Z2. It is estimated from a sequence of i.i.d. sam-
ples of pairs (Z(1:k)

1 , Z
(1:k)
2 ) from the joint density pZ1,Z2 :
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where f(·, ·) is a scoring similarity between vectors, e.g.,
cosine similarity. Many contrastive methods use it as a loss
function in the original or slightly different forms depending
on negative sample choice. We discuss the MI maximization
in this class of methods in detail in Section 3.1.

The ER bound is a long standing result in information the-
ory (Gallager, 1968). It can be derived by considering a
tractable reconstruction density qZ2|Z1

that for MVSSL cor-
responds to a choice of a similarity function:
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In the MVSSL setting, qZ2|Z1
is a design choice and we are

interested in optimizing the parameters of f✓ � ⇡✓ such that
the resulting density pZ1,Z2 maximizes IER(Z1;Z2). The
density pZ1,Z2 implicitly results from sampling inputs X ,
possibly transforming them via stochastic transformations t,
and then deterministically transforming them through the en-
coder f✓ � ⇡✓ to form Z. The term E[DKL(pZ2|Z1

kqZ2|Z1
)]

determines the magnitude of the gap of the IER bound.

The term reconstruction originates from information theory.
It is often concerned with reconstructing signal from a com-
pressed code and is equal to �H(Z2|Ẑ2), where Ẑ2 is a RV
such that Z2 � Z1 � Ẑ2 is a Markov chain. We find it also
more appropriate to reason about MVSSL, as for methods in
the right column of Figure 1, Z1 and W2 belong to different
spaces and hence the term similarity does not apply.
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Figure 1. The MVSSL prototypes. An image X is transformed with augmentations t to generate two views V and projections Z. Dashed
and dotted lines indicate loss functions and optional relationships between variables respectively. Top: Identical branches: Parameters ✓
are identical across branches and the loss is symmetric. Bottom: Asymmetric branches: Parameters ✓, ⇠ across branches are different and
the loss is asymmetric. Left: The projections Z are not further processed. Right: The projections Z are processed into auxiliary discrete
variables W , potentially using another variable C. Parameters ✓, ⇠ are optimized such that Z are predictive of the other branch’s W .

guished by how they define the negative pairs. Most of these
methods are derived from two directions: the metric learn-
ing literature (Sohn, 2016), and the InfoNCE objective
(Oord et al., 2018), which is a lower bound on the mutual
information between the projections I(Z1;Z2). We discuss
these methods in detail in Section 3.1. Clustering methods
cluster the projections formed by one branch and use the
resulting discrete cluster assignments as targets for the other
branch by optimizing a cross-entropy loss (Caron et al.,
2018; Asano et al., 2019; Caron et al., 2020). Distillation-
based methods design the two branches asymmetrically,
using one branch’s projections as targets for the other (Grill
et al., 2020; Chen & He, 2021; Caron et al., 2021). The two
branches, referred to as teacher and student branches, differ.
Common differences include gradients being computed only
by the student (stop-grad), teacher’s parameters being set
via an exponential moving average of the student’s, and an
additional predictor network for the student.

Mutual information lower bounds Estimating MI is
fundamentally difficult (McAllester & Stratos, 2020) and
for gradient-based representation learning, it is common
to rely on the gradients of a lower bound on MI without
estimating MI directly (Poole et al., 2019). In this work,
the core quantity of interest is the MI between MVSSL
projections I(Z1;Z2). Two MI lower bounds that can be
used to optimize this quantity are InfoNCE and ER.

InfoNCE (Oord et al., 2018; Poole et al., 2019) is a lower
bound on MI. In MVSSL, the is MI between the the projec-
tions Z1, Z2. It is estimated from a sequence of i.i.d. sam-
ples of pairs (Z(1:k)

1 , Z
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2 ) from the joint density pZ1,Z2 :

INCE(Z1;Z2) :=
1

k

kX

i=1

E
"
log

e
f(Z(i)

1 ,Z(i)
2 )

1
k

Pk
j=1 e

f(Z(i)
1 ,Z(j)

2 )

#
, (1)

where f(·, ·) is a scoring similarity between vectors, e.g.,
cosine similarity. Many contrastive methods use it as a loss
function in the original or slightly different forms depending
on negative sample choice. We discuss the MI maximization
in this class of methods in detail in Section 3.1.

The ER bound is a long standing result in information the-
ory (Gallager, 1968). It can be derived by considering a
tractable reconstruction density qZ2|Z1

that for MVSSL cor-
responds to a choice of a similarity function:
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In the MVSSL setting, qZ2|Z1
is a design choice and we are

interested in optimizing the parameters of f✓ � ⇡✓ such that
the resulting density pZ1,Z2 maximizes IER(Z1;Z2). The
density pZ1,Z2 implicitly results from sampling inputs X ,
possibly transforming them via stochastic transformations t,
and then deterministically transforming them through the en-
coder f✓ � ⇡✓ to form Z. The term E[DKL(pZ2|Z1

kqZ2|Z1
)]

determines the magnitude of the gap of the IER bound.

The term reconstruction originates from information theory.
It is often concerned with reconstructing signal from a com-
pressed code and is equal to �H(Z2|Ẑ2), where Ẑ2 is a RV
such that Z2 � Z1 � Ẑ2 is a Markov chain. We find it also
more appropriate to reason about MVSSL, as for methods in
the right column of Figure 1, Z1 and W2 belong to different
spaces and hence the term similarity does not apply.
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Analysis: Using a different bound on MI w.r.t. prior works

•
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but the entropy is only 
maintained stable
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