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Motivation: MVSSL progressing rapidly
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Motivation: But poorly understood theoretically

® [ens of Information Theory

¥ Some contrastive MVSSL methods optimize InfoNCE, a lower bound
on the Mutual Information (Ml)

. What about the other MVSSL methods?
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Analysis: Using a different bound on MI w.r.t. prior works
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® Entropy: How much information can be learnt

® Reconstruction: How much information /s learnt
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