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′
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Requirement: A(D) and A(D′) should have similar distributions

Here, we use Renyi DP, which requires Dα (A(D)||A(D′)) ≤ ε
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Noise Injection and DP-SGD

Given D = (d1, . . . , dn), find u ∈ Rp minimizing f (u;D) = 1
n

∑n
i=1 f (u; di ) under DP

Algorithm 1 Differentially Private SGD (DP-SGD) Bassily2014a; Abadi2016
Initialize u0 ∈ Rp (independent of D)
for t = 0, . . . ,T − 1 do
Pick it ∈ {1, . . . , n} uniformly at random
ut+1 ← ut − γ(t)

(
∇f (ut ; dit ) + ηt+1

)
where ηt+1 ∼ N (0, σ2∆2Ip)

Return uT

Utility analysis: same as non-private SGD (with additional noise due to privacy)

Privacy analysis: DP-SGD is (α, αT
2n2σ2 ) by subsampled Gaussian mechanism and

composition property of RDP over T iterations
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ADMM

Alternating Direction Method of Multipliers (ADMM) aims to solve:

minimize
x , z

f (x ;D) + g(z)

subject to Ax + Bz = c

Algorithm 4 ADMM algorithm
Input: initial point u0, step size λ ∈ (0, 1], Lagrange parameter γ > 0
for k = 0 to K − 1 do
zk+1 = argminz

{
g(z) + 1

2γ ‖Bz + uk‖2
}

xk+1 = argminx
{
f (x ;D) + 1

2γ ‖Ax + 2Bzk+1 + uk − c‖2
}

uk+1 = uk + 2λ (Axk+1 + Bzk+1 − c)
Return zK

How can we make ADMM private and analyze its utility?
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Noisy Fix-point Operators

We study the general noisy fixed-point iteration

Algorithm 5 Noisy fixed-point iteration
Input: non-expansive operator R = (R1, . . . ,RB) over 1 ≤ B ≤ p blocks,step sizes (λk)k∈N ∈
(0, 1], active blocks (ρk)k∈N ∈ {0, 1}B , errors (ek)k∈N, noise variance σ2 ≥ 0
for k = 0, 1, . . . do

for b = 1, . . . ,B do
uk+1,b = uk,b + ρk,bλk(Rb(uk) + ek,b + ηk+1,b − uk,b) with ηk+1,b ∼ N (0, σ2Ip)

This general algorithm applies a λk -averaged operator with Gaussian noise, with possibly
randomized, inexact and block-wise updates

This setup is easy to combine with amplification by iteration and by subsampling

We recover DP-SGD with R(u) = u − 2
β∇f (u;D), B = 1,

ek = 2
β (∇f (uk ;D)−∇f (uk ; dik ))
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General utility analysis

Theorem (Utility guarantees for noisy fixed-point iterations Cyffers2023a)
Assume that R is τ -contractive with fixed point u∗. Let P[ρk,b = 1] = q for some q ∈ (0, 1].
Then there exists a learning rate λk = λ ∈ (0, 1] such that the iterates satisfy:

E
(
‖uk+1 − u∗‖2

)
6

(
1− q2(1− τ)

8

)k

D + 8
( √

pσ + ζ
√
q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)
(1)

where D = ‖u0 − u∗‖2, p is the dimension of u, and E[‖ek‖2] ≤ ζ2 for some ζ ≥ 0.

The only assumption on R is that it is τ -contractive

We roughly recover DP-SGD rate for strongly convex objective

Let’s apply it to ADMM
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ADMM as fix point for ERM

ADMM can be written as Lions Mercier operator

T = λRγp1Rγp2 + (1− λ)I

with Rγp = 2 proxγp −I .
The consensus problem fits the general form solved by ADMM algorithms:

minimize
x ∈ Rnp, z ∈ Rp

1
n

n∑
i=1

f (xi ; di ) + r(z)

subject to x − In(p×p)z = 0,

where each data item di has its own parameter xi ∈ Rp
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Privacy-utility for centralized, federated and decentralized ADMM

Algorithm 7 Private ADMM
Input: initial point z0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, parameter γ > 0,
number of sampled users 1 ≤ m ≤ n
for k = 0 to K − 1 do
ẑk+1 = 1

n

∑n
i=1 uk,i

zk+1 = proxγr (ẑk+1)
for i = 1 to n do
xk+1,i = proxγfi (2zk+1 − uk,i )

uk+1,i = uk,i + 2λ
(
xk+1,i − zk+1 + 1

2ηk+1,i
)
with ηk+1,i ∼ N (0, σ2Ip)

Return zK

Centralized Federated Decentralized

Privacy loss 8αKL2γ2

σ2n2
16αKL2γ2

σ2n2
8αKiL

2γ2 ln n
σ2n

E(‖uK − u∗‖2) (in O(·))
√
pαLγ√
εn(1−τ) + pαL2γ2

εn2(1−τ)3
√
pαLγ√

εrn(1−τ) + pαL2γ2

εr2n2(1−τ)3
√
pαLγ√
εn(1−τ) + pαL2γ2

εn(1−τ)3
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Conclusion

We provide a unifying view of private optimization algorithms by framing them as noisy
fixed-point iterations, and prove general utility guarantees

Our framework can be used to derive and analyze new private algorithms by instantiating
our general scheme with particular fixed-point operators

We illustrate this by designing private ADMM algorithms for centralized and federated
learning; in contrast, prior work used ad-hoc algorithmic modifications and customized
analysis with many privacy parameters
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