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Test-time Adaptation (TTA)



Learning Paradigm Shifts: Test-time Adaptation (TTA)
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Test-time Adaptation learns the distribution 
knowledge from test batch 
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Out of Distribution Test Data

Distribution knowledge: 
Fog Experiment



TTA can adjust the model adaptively 
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Test-time Adaptation: Test Batch Normalization 
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Inference Stage	
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Observations on Test-time Adaptation (TTA) 
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Adapted model is generated based 
on the entire test batch

The prediction for one entry in a batch 
can be influenced by other entries



Test-time Adaptation (TTA) from Adversarial Lens
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Malicious data at test time can interfere with the generation of adapted 
model, consequently disrupting predictions on other unperturbed data



Introducing Distribution Invading Attacks (DIA)
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An adversary can introduce malicious behaviors into the adapted 
model by crafting samples in the test batch

General Attack Framework: Distribution Invading Attacks



Introducing Distribution Invading Attacks (DIA)
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General Attack Framework: Distribution Invading Attacks

Adversary’s Objective Input Constraints

Targeted Attack

Indiscriminate Attack

Unconstrained

ℓ# Constraints

Stealthy Targeted Attack Simulated Corruptions



Introducing Targeted Distribution Invading Attacks 
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Introducing Targeted Distribution Invading Attacks 
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Case Study: Targeted DIA on Test Batch Norm
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Case Study: Targeted DIA on Test Batch Norm
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Case Study: Targeted DIA on Test Batch Norm
min𝐱!𝓛 𝒇 𝐱𝒕𝒈𝒕; 	𝜽𝑩𝑵 , 𝒚𝒕𝒈𝒕

Malicious data Batch Norm

● Using Gradient Descent to minimize the loss of targeted 
sample.
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Experiment Results: (DIA) on Test Batch Norm
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Conclusion
• While TTA achieves better performance on OOD data, it has 

a novel security risk
• Distribution Invading Attacks exploit the risks of TTA. 
• Adversary's objectives 
• Input constraints
• Eight other TTA methods (check our paper) 

• We investigate mitigation strategies (check our paper)
• adversarially trained model
• robustly estimating BN statistics

• Our findings inspire building robust and effective TTA 
techniques.
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