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Distribution/Domain Shifts
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Learning Paradigm Shifts: Test-time Adaptation (TTA)

Conventional ML Result
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Test-time Adaptation learns the distribution
knowledge from test batch
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TTA can adjust the model adaptively
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Test-time Adaptation: Test Batch Normalization
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on Test-time Adaptation (TTA)

Test-time Adaptation Result
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Adapted model is generated based
on the entire test batch
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The prediction for one entry in a batch
can be influenced by other entries
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Test-time Adaptation (TTA) from

__________________

_______

Test-time Adaptation Result ® Test Data (Benign)
Trained S~ S CLETTEEL LR .
Model : ! ! Malicious Data !
TA Adapted  Predict | | :
Model ‘ee-e-eeeeee---s 1@ Correct Predicti |

________________

{ Test Batch : !
: ! ' @ Incorrect P

1 @ @ Send

iction !

own Prediction

_______

A

Malicious data at test time can interfere with the generation of adapted
model, consequently disrupting predictions on other unperturbed data
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Introducing Distribution Invading Attacks (DIA)

General Attack Framework: Distribution Invading Attacks

An adversary can introduce malicious behaviors into the adapted
model by crafting samples in the test batch

_________________________

Test time Adaptation Result ® Test Data (Benign)

Trained P~ _, -/—~U . 77—/~ P . |
Model ‘QTA Adapted Predict Malicious Data
________________ ode /... 1 ® Correct Prediction !
Test Batch : . !

. @ Incorrect Prediction !

:‘o o : Send . ® Unknown Predictiory

________________________________________

10



Introducing Distribution Invading Attacks (DIA)

General Attack Framework: Distribution Invading Attacks

Adversary’s Objective Input Constraints
Targeted Attack Unconstrained
Indiscriminate Attack £, Constraints

Stealthy Targeted Attack Simulated Corruptions
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Introducing Targeted Distribution Invading Attacks

e Adversary’s Objective:
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Introducing Targeted Distribution Invading Attacks

e Adversary’s Objective:

e Adversary’s Capability:
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Introducing Targeted Distribution Invading Attacks

e Adversary’s Objective:

Misclassifying a crucial targeted sample as a pre-selected label
e Adversary’s Capability:

« Inject/craft a small portion of unconstrained samples to the test batch
o Attacker’s Knowledge:

« Model Architecture and parameters
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Case Study: Targeted DIA on Test Batch Norm
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Case Study: Targeted DIA on Test Batch Norm
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Case Study: Targeted DIA on Test Batch Norm

Test-time Batch Normalization Statistics (TeBN)
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Case Study: Targeted DIA on Test Batch Norm
xmﬁ(f(xtgti| BBNI)» ytgt)
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o Using Gradient Descent to minimize the loss of targeted
sample.



Experiment Results: (DIA) on Test Batch Norm

Attack Success Rate of Distribution Invading Attack
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Experiment Results: (DIA) on Test Batch Norm

Attack Success Rate of Distribution Invading Attack
Achieves a hlgh ASR
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Conclusion

While TTA achieves better performance on OOD data, it has
a novel security risk

Distribution Invading Attacks exploit the risks of TTA.
 Adversary's objectives

* |nput constraints

 Eight other TTA methods (check our paper)

We investigate mitigation strategies (check our paper)
e adversarially trained model

* robustly estimating BN statistics

Our findings inspire building robust and effective TTA

techniques.
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