Sharper Bounds for ℓ_p Sensitivity Sampling

Taisuke Yasuda and David P. Woodruff

6 Carnegie Mellon University Computer Science Department

Sampling for Efficient Machine Learning

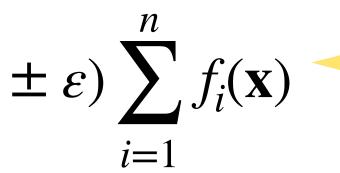
• Empirical risk minimization: minimize $f: X \to \mathbb{R}_{>0}$ of the form

• **Sampling**: we seek a <u>subset of training examples</u> $S \subseteq [n]$ and <u>weights</u> w_i for $i \in S$ s.t. for all $\mathbf{x} \in X$, $\sum w_i \cdot f_i(\mathbf{x}) = (1 \pm \varepsilon) \sum_{i=1}^{n} f_i(\mathbf{x})$ Approximate the objective fn up to a $(1 \pm \varepsilon)$ factor for every $\mathbf{x} \in \mathbf{x}$ $i \in S$

i=1

- Why sample?
 - Reduce training/inference resources (time, memory, communication)
 - Reduce number of labels needed
 - Preserves sparsity and structure

 $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$ Sum over *n* training examples



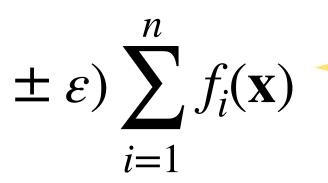
Sampling for Efficient Machine Learning

• Empirical risk minimization: minimize $f: X \to \mathbb{R}_{>0}$ of the form

for all $\mathbf{x} \in X$, $\sum w_i \cdot f_i(\mathbf{x}) = (1 \pm \varepsilon) \sum_{i=1}^n f_i(\mathbf{x})$ Approximate the objective fn up to a $(1 + \varepsilon)$ factor for every $\mathbf{x} \in \mathbf{x}$ $i \in S$

 $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$ Sum over *n* training examples

• **Sampling**: we seek a <u>subset of training examples</u> $S \subseteq [n]$ and <u>weights</u> w_i for $i \in S$ s.t.



i=1

to a $(1 + \varepsilon)$ factor for every $\mathbf{x} \in X$

Question. How small can the sample S be to achieve the above guarantee?

Sensitivity Sampling

- for all $\mathbf{x} \in X$, $\sum w_i \cdot f_i(\mathbf{x}) = (1 \pm \varepsilon) \sum f_i(\mathbf{x})$ $i \in S$
- Classic technique for achieving <! sensitivity sampling
 - [Langberg-Shulman 2010, Feldman-Langberg 2011]
 - Define **sensitivity scores**:

for each training example $i \in [n]$

- Sample *i*-th example with probability proportional to the sensitivity scores

• **Sampling**: we seek a <u>subset of training examples</u> $S \subseteq [n]$ and <u>weights</u> w_i for $i \in S$ s.t. i=1

n], define
$$\sigma_i = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{f(\mathbf{x})} = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

Sensitivity Sampling

- **Prior work:** sensitivity sampling is very effective!
 - Provable guarantees for a wide class of ERM problems

Nearly optimal sampling guarantees for least squares regression

• ℓ_p linear regression: let A be an $n \times d$ design matrix, let b be an n-dimensional target vector

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p = \sum_{i=1}^n |\langle \mathbf{a}_i, \mathbf{x} \rangle - \mathbf{b}_i|^p$$

Theorem [FL11]. Sensitivity sampling gives $(1 + \varepsilon)$ -approximations with $|S| = \tilde{O}(\varepsilon^{-2} \mathfrak{S} d)$, for VC dimension d and total sensitivity $\mathfrak{S} = \sum_{i=1}^{n} \sigma_{i}$

- **Question**. What about for ℓ_p linear regression? How well
- does sensitivity sampling perform for this problem?

Sensitivity Sampling

ℓ_p linear regression

- Sensitivity sampling immediately applies! • VC dimension d, total
- Sampling bound [Feldman-Langberg 2011] bound: •

$$|S| = \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}d\right) \leq \begin{cases} \tilde{O}\left(\varepsilon^{-2}d^{p/2+1}\right) & p > 2\\ \tilde{O}\left(\varepsilon^{-2}d^{2}\right) & p \leq 2 \end{cases}$$

- But we know this bound is loose for p = 2!•
 - $|S| = \tilde{O}(\epsilon^{-2}d)$ for p = 2 [Drineas-Mahoney-Muthukrishnan 2006]

sensitivity
$$\mathfrak{S} \leq \begin{cases} d^{p/2} & p > 2 \\ d & p \leq 2 \end{cases}$$

Question. How small can the sample *S* be with sensitivity sampling for ℓ_p linear regression?

 $|S| = \begin{cases} \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}^{2-2/p}\right) \\ \tilde{O}\left(\varepsilon^{-2}\mathfrak{S}^{2/p}\right) \end{cases}$

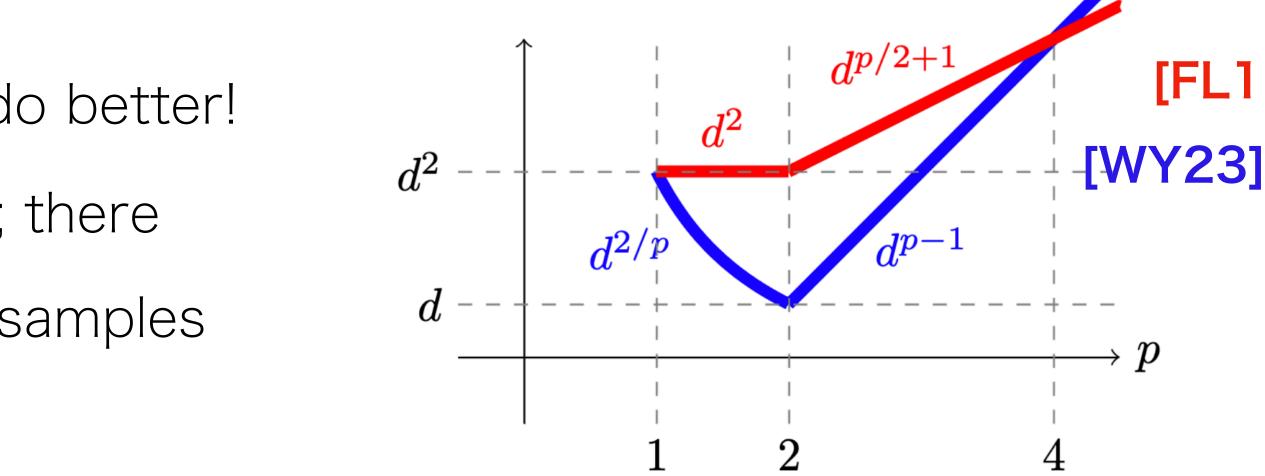
- Remarks ullet
 - Analysis of [FL11] is loose we can do better!
 - Upper bound is nearly tight for $p \leq 2$; there exist matrices A that require $\Omega(\mathfrak{S}^{2/p})$ samples

Our Results

Theorem [WY23]. For ℓ_p linear regression, sensitivity sampling gives $(1 + \epsilon)$ -approximations with

$$p > 2 \qquad \leq \begin{cases} \tilde{O}\left(\varepsilon^{-2}d^{p-1}\right) & p > 2 \\ \tilde{O}\left(\varepsilon^{-2}d^{2/p}\right) & p \leq 2 \end{cases}$$

Sample Complexity Bounds for ℓ_p Sensitivity Sampling



Techniques

- We have a tight analysis for p = 2, how can we make use of this? —
- Key idea: relate ℓ_p sensitivity scores to ℓ_2 sensitivity scores

Lemma [WY23]. ℓ_p sensitivities are within a $n^{p/2-1}$ factor away from the ℓ_2 sensitivities.

Applications

- Sampling algorithms for ℓ_p linear regression on low sensitivity instances
 - Low rank + sparse, polynomial feature maps, etc…
- ℓ_p polynomial regression with noise

Our Results

Summary lacksquare

regression

Open Directions

- Can guarantees for sensitivity sampling be improved in other settings?

Poster: •

- Thursday 1:30 pm 3:00 pm, Exhibit Hall 1 #336
- Come chat!

Conclusion

- We give a sharper analysis of sensitivity sampling, a classic sampling technique, for ℓ_p linear

$$\sigma_i = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{f(\mathbf{x})} = \sup_{\mathbf{x} \in X} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

Thank you!!