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Sampling for Efficient Machine Learning

• Empirical risk minimization: minimize  of the form 
 

• Sampling: we seek a subset of training examples  and weights  for  s.t.

f : X → ℝ≥0

S ⊆ [n] wi i ∈ S

f(x) =
n

∑
i=1

fi(x)

for all x ∈ X, ∑
i∈S

wi ⋅ fi(x) = (1 ± ε)
n

∑
i=1

fi(x)

• Why sample?  
- Reduce training/inference resources (time, memory, communication) 

- Reduce number of labels needed 

- Preserves sparsity and structure

Approximate the objective fn up 
to a  factor for every (1 + ε) x ∈ X

Sum over  training examplesn



Sampling for Efficient Machine Learning

• Empirical risk minimization: minimize  of the form 
 

• Sampling: we seek a subset of training examples  and weights  for  s.t.

f : X → ℝ≥0

S ⊆ [n] wi i ∈ S

f(x) =
n

∑
i=1

fi(x)

for all x ∈ X, ∑
i∈S

wi ⋅ fi(x) = (1 ± ε)
n

∑
i=1

fi(x) Approximate the objective fn up 
to a  factor for every (1 + ε) x ∈ X

Question. How small can the sample  be to achieve the above guarantee?S

Sum over  training examplesn



Sensitivity Sampling

• Sampling: we seek a subset of training examples  and weights  for  s.t. 
 

• Classic technique for achieving ☝: sensitivity sampling 

- [Langberg-Shulman 2010, Feldman-Langberg 2011] 

- Define sensitivity scores: 
 

- Sample -th example with probability proportional to the sensitivity scores

S ⊆ [n] wi i ∈ S

i

for all x ∈ X, ∑
i∈S

wi ⋅ fi(x) = (1 ± ε)
n

∑
i=1

fi(x)

for each training example , define i ∈ [n] σi = sup
x∈X

fi(x)
f(x)

= sup
x∈X

fi(x)
∑n

j=1 fj(x)



Sensitivity Sampling

• Prior work: sensitivity sampling is very effective! 

- Provable guarantees for a wide class of ERM problems 
 
 
 

- Nearly optimal sampling guarantees for least squares regression 
 
 

•  linear regression: let  be an  design matrix, let  be an -dimensional target vector ℓp A n × d b n

Theorem [FL11]. Sensitivity sampling gives -approximations 

with , for VC dimension  and total sensitivity 

(1 + ε)

|S| = Õ (ε−2𝔖d) d

Question. What about for  linear regression? How well 
does sensitivity sampling perform for this problem?

ℓp

f(x) = ∥Ax − b∥p
p =

n

∑
i=1

|⟨ai, x⟩ − bi|p

𝔖 =
n

∑
i=1

σi



Sensitivity Sampling
 linear regressionℓp

• Sensitivity sampling immediately applies! 
 

• Sampling bound [Feldman-Langberg 2011] bound: 
 
 

• But we know this bound is loose for ! 

-  for  [Drineas-Mahoney-Muthukrishnan 2006]

p = 2

|S| = Õ(ε−2d) p = 2

VC dimension , total sensitivity d 𝔖 ≤ {dp/2 p > 2
d p ≤ 2

|S| = Õ (ε−2𝔖d) ≤ {
Õ (ε−2dp/2+1) p > 2

Õ (ε−2d2) p ≤ 2

Question. How small can the sample  be with 
sensitivity sampling for  linear regression?

S
ℓp



Our Results

• Remarks  
- Analysis of [FL11] is loose - we can do better! 

- Upper bound is nearly tight for ; there 

exist matrices  that require  samples

p ≤ 2

A Ω(𝔖2/p)

Theorem [WY23]. For  linear regression, sensitivity 

sampling gives -approximations with 

ℓp

(1 + ε)

|S| = {
Õ (ε−2𝔖2−2/p) p > 2

Õ (ε−2𝔖2/p) p ≤ 2
≤ {

Õ (ε−2dp−1) p > 2

Õ (ε−2d2/p) p ≤ 2

[FL11]
[WY23]



Our Results

• Techniques  

- We have a tight analysis for , how can we make use of this? 

- Key idea: relate  sensitivity scores to  sensitivity scores 
 
 

• Applications  

- Sampling algorithms for  linear regression on low sensitivity instances 

‣ Low rank + sparse, polynomial feature maps, etc… 

-  polynomial regression with noise

p = 2

ℓp ℓ2

ℓp

ℓp

Lemma [WY23].  sensitivities are within a  

factor away from the  sensitivities.

ℓp np/2−1

ℓ2



Conclusion

• Summary 

- We give a sharper analysis of sensitivity sampling, a classic sampling technique, for  linear 
regression 

• Open Directions  

- Can guarantees for sensitivity sampling be improved in other settings? 

• Poster:  

- Thursday 1:30 pm - 3:00 pm, Exhibit Hall 1 #336 

- Come chat!

ℓp

σi = sup
x∈X

fi(x)
f(x)

= sup
x∈X

fi(x)
∑n

j=1 fj(x)

Thank you!!


