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Robustness via Randomized Ensembles
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Boosted Adversarial Training (BAT) [Pinot et al, ICML’20]
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Our Prior Work [ICML’22]: Revealing the vulnerability
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Fundamental Questions on RECs

• when does randomization help in improving robustness?

• what are the limits of RECs?

• how to find the optimal sampling probability?

• how do we train robust RECs in practice?



Summary of Theoretical Contributions

• derived a theoretical framework for analyzing the robustness of RECs

• derived fundamental results on:

– necessary and sufficient conditions for RECs to be useful

– theoretical robustness limits of RECs

– efficient and optimal methods for finding the optimal sampling probability 

Thm 1.∀ 𝑓1 & 𝑓2 with adv. risks 𝜂1& 𝜂2. If: ℙ 𝓏 ∈ ℛ1 > 𝜂1 − 𝜂2  → 𝜂 𝛂∗ =
1

2
𝜂1 + 𝜂2 − ℙ 𝓏 ∈ ℛ1  

Thm 2.∀ 𝑓𝑖 𝑖=1
𝑀  with adv. risks 𝜂𝑖 𝑖=1

𝑀 . We can tightly bound the REC adv. risk: min
𝑘∈[𝑀]

𝜂𝑘

𝑘
≤ 𝜂 𝛂 ≤ 𝜂𝑀 

Thm 3. The OSP algorithm output 𝛂𝑇 satisfies 0 ≤ Ƹ𝜂 𝛂𝑇 − Ƹ𝜂 𝛂∗

𝑇→∞
0, for all initial conditions
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Proposed Training Algorithm: BARRE

• robustness against ℓ∞ norm-bounded adversaries – CIFAR-10  

• BARRE: drastically improve robust accuracy while maintaining complexity 

methods:

networks:



Thank You!
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code available at https://github.com/hsndbk4/BARRE

https://github.com/hsndbk4/BARRE
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