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nodes N of the graph) the following expressions for every node v 
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Problem formulation: Efficient Graph Field Integration
Compute efficiently (in the sub-quadratic time in the number of 
nodes N of the graph) the following expressions for every node v 
of the given graph G

similarity between two nodes
(e.g. a function of the shortest-path 
distance between them)

tensor field defined on 
the graph

integration 
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Graph as a discretization of the 2-dim manifold: 

Applications: interpolation on manifolds, topological masking mechanisms for Transformers with structural 
inputs, physics simulations in curved spaces, Wasserstein barycenter, (Fused) Gromov Wasserstein, … 
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Our contributions: SeparatorFactorization (SF) and RFDiffusion (RFD)

SF
● works with input mesh-graphs
● leverages their low-genus structure ( 

-> small-size separators) 
● applies our new results in structural 

graph theory on fast graph field 
integration via separator-based 
divide-and-conquer methods and 
Fast Fourier Transform 

● T =                      time complexity for 
general K, T = 
if K := exp(-λ*shortest-path distance) 
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Experiments
Vertex normal and velocity prediction

● Benchmark on 120 
meshes for 3D-printed 
objects from Thinki10k.

● Compare SF with a naive 
brute force method (GT) 
as well as various low 
distortion tree methods.

● Compare RFD with 
various algorithms that 
efficiently compute the 
action of matrix 
exponentials.



Wasserstein Distances and Barycenters

● Integrate our GFI methods into the OT 
problem of moving masses on a surface 
mesh, particularly computation of 
Wasserstein barycenters.

● Geodesic distance on a surface is 
intractable, so use 2 approximations of 
this metric: 

○ shortest-path distance (SF)
○ distance coming from an ϵ-NN 

graph approximating the surface 
(RFD)



(Fused) Gromov Wasserstein distances

● Integrate RFD method in the computation of (Fused) 
Gromov Wasserstein discrepancy. 

● Benchmark it by running extensive speed/accuracy 
tests on synthetic 3D distributions. 



● Compute the eigendecomposition of the 
approximated RFD kernel matrix.

● Use 16 smallest eigenvalues for 
classification on ModelNet10 and Cubes 
datasets using a random forest. 

● Methods like SPH and LFD on ModelNet achieves about 79%.
● Cubes is challenging and PointNet achieves only 55% accuracy.

Point Cloud Classification
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