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Background: Integral Representation of Neural Networks
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3 variables, nonconvex
Neural network

: Dimension of input

Integral representation
1 variable, linear

Weight Basis

: Activation function
Overparameterization

Ridgelet transform of   : weight that can be used for reconstructing

if    and    satisfy an admissibility condition

• Existing work: Ridgelet transform as a tool for theoretical analysis of neural networks


• Problem: Hard to use in practice due to                    runtime by existing classical algorithms

: Ridgelet function
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Result:1 Discrete Ridgelet Transform
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1 variable, linear

Definition: Replace integral with sum over discretized space with prime

Discretization

1 variable, linear

Discrete ridgelet transform:

Discretized neural network:

Exact representation                                & Implementable with classical and quantum bits
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Result 2: Quantum Ridgelet Transform (QRT)
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QRT = Discrete ridgelet transform of quantum states

: isometry transformation

Thm: We show a quantum algorithm achieving QRT within runtime                          

• Exponentially faster in D than the existing classical algorithms for ridgelet transform


• Classical algorithms provide a sequence of values, but QRT outputs a quantum state 

→ Also important to find an end-to-end application that does not cancel out the speedup

arXiv:2301.11936

https://arxiv.org/abs/2301.11936


Result 3: Application to Lottery Ticket Hypothesis

5 arXiv:2301.11936

Original network: High accuracy Subnetwork: Achieving same accuracy


if we find an appropriate subnetwork

Task: Find sparse, trainable subnetwork

• Represent weight as amplitude of quantum state  

• Obtain weight by ridgelet transform for given examples 20 40 60 80 100 120
N: number of repetitions of sampling
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sampling from uniform distribution

         :

Parameters of nodes

in the hidden layer

Optimized probability distribution
Idea: Find high-weight nodes → Use QRT to sample parameters of high-weight nodes

Exponentially wide Small

Discretized neural network
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Summary
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• Result 1: Formulation of discrete ridgelet transform 

• Result 2: Development of quantum algorithm = quantum ridgelet transform (QRT) 

• Result 3: Application to finding sparse, trainable neural networks in lottery ticket hypothesis

Establishing QRT as a fundamental subroutine for quantum machine learning 

with an end-to-end application to the task in learning with conventional neural networks
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