

A Closer Look at Self-Supervised Lightweight Vision Transformers

Shaoru Wang, Jin Gao*, Zeming Li, Xiaoqin Zhang, Weiming Hu

Institute of Automation, Chinese Academy of Sciences

Megvii Research

Wenzhou University

Background and Motivations

- Pre-Training can significantly improve performance of large models on various downstream tasks, so what about lightweight vision models?
- Lightweight vision models are essential for practical scenarios
 - Must be deployed on edge devices due to data privacy, real-time requirement, ...

An empirical study of the **pre-training of lightweight ViTs**

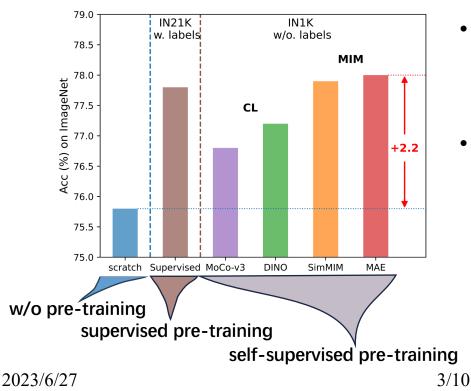
① A practical guide on how to choose pre-training schemes for various downstream scenarios;

(2) Analyses on the distinct
 behaviors of pre-trained
 models from different methods,
 e.g., CL(Contrastive Learning) and
 MIM(Masked-Image-Modeling);

③ A pre-training distillation approach that can significantly improve the MIM-based pre-trained models.

How Well Does Pre-Training Work on Lightweight ViTs?

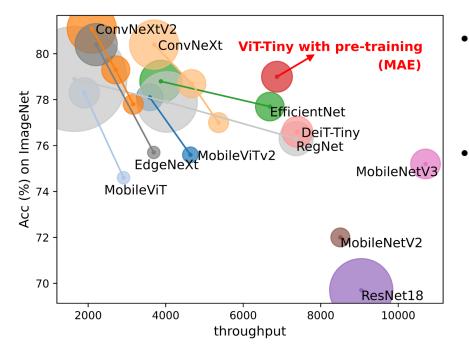
• ViT-Tiny: vanilla architecture, 5.7M parameters



- Pre-Training can also help lightweight
 ViTs to achieve better downstream
 classification performance on ImageNet.
- When downstream tasks are with sufficient labeled data, MAE (Masked Auto-Encoders) is preferred, which contributes to the most gains.

How Well Does Pre-Training Work on Lightweight ViTs?

Proper Pre-Training Helps Vanilla ViTs Beat SOTA Networks!



- The enhanced ViT-Tiny is on par with or even outperforms most previous ConvNets and ViT derivatives.
- Based on a naive network architecture, one can also achieve SOTA by adopting proper pre-training, rather than introducing sophisticated components into the architecture design.

How Well Does Pre-Training Work on Lightweight ViTs?

Downstream Data Scale Matters!

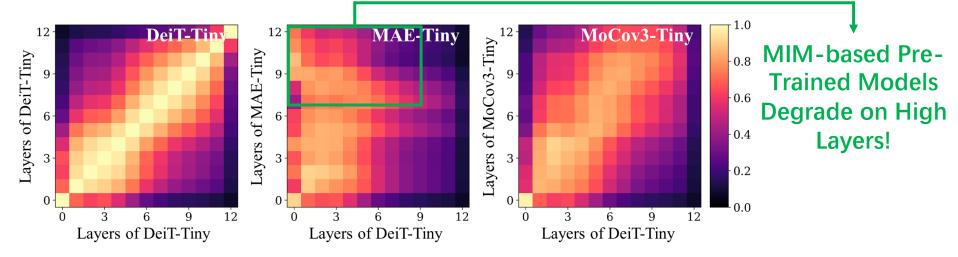
Datasets Init.	Flowers (2k/6k/102)	Pets (4k/4k/37)	Aircraft (7k/3k/100)	Cars (8k/8k/196)	CIFAR100 (50k/10k/100)	iNat18 (438k/24k/8142)	COCO(det.) (118k/	COCO (seg.) 50k/80)
Random	30.2	26.1	9.4	6.8	42.7	58.7	32.7	28.9
supervised DeiT-Tiny	96.4	93.1	73.5	85.6	85.8	63.6	40.4	35.5
self-supervised MoCov3-Tiny MAE-Tiny	94.8 85.8	87.8 76.5	73.7 64.6	83.9 78.8	83.9 78.9	54.5 60.6	39.7 39.9	35.1 35.4

• Self-supervised pre-training performs not well on data-insufficient downstream classification tasks and dense-prediction tasks.

Revealing the Secrets of the Pre-Training

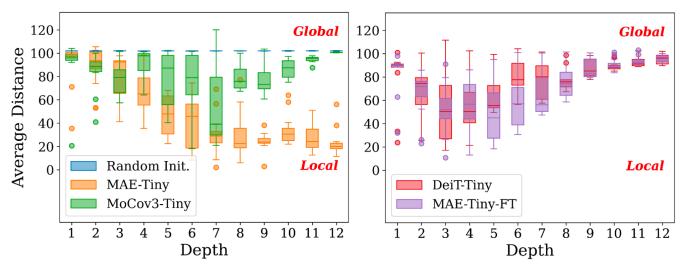
Representation similarity between the layers across networks

- DeiT-Tiny (A supervised pre-trained ViT-Tiny) as the reference model



Lower layers matter more than higher ones if sufficient downstream data is provided
 Higher layers matter in data-insufficient downstream tasks

Revealing the Secrets of the Pre-Training



Average Attention Distance

$$\boldsymbol{D}_{h,j} = \sum_{i} \operatorname{softmax}(\boldsymbol{A}_{h})_{i,j} \boldsymbol{G}_{i,j}$$

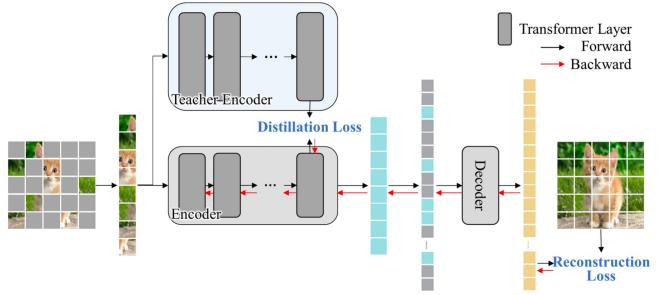
A: Attention map*G*: Euclidean distance

- The pre-training introduces locality inductive bias!
- The pre-training with MAE makes the attention of the downstream models more local and concentrated.

A Pre-Training Distillation Approach

Solution: Pre-Training distillation based on MAE

- Improve the quality of higher layers with the help of pre-trained teacher models



- Based on MAE;
- MAE-Base as the teacher;
- Distill on the attention maps;

 $L_{\rm attn} = {\rm MSE}(\boldsymbol{A}^T, \boldsymbol{M}\boldsymbol{A}^S)$

• Distill on the corresponding higher layers of the teacher and student.

A Pre-Training Distillation Approach

Distillation improves downstream performance!

	Methods	Data	Top-1 Acc. (%)	12-	MAE-Tiny	12- 2	D- MAE-Tiny	1.0
_	from scratch	-	75.8	Tiny		ii.		- 0.8
	Supervised (Steiner et al., 2021)	IN21K w/ labels	76.9	Ë-		YE		0.6
5	Supervised (Steiner et al., 2021)	IN21K w/ labels	77.8	₩ 6-		M 6		0.0
, N	MoCo-v3 (Chen et al., 2021a)	IN1K w/o labels	76.8	of		fD		0.4
	MAE (He et al., 2021)	IN1K w/o labels	78.0	ayers		S 3-		
	DINO (Caron et al., 2021)	IN1K w/o labels	77.2	Lay		aye		-0.2
	SimMIM (Xie et al., 2022)	IN1K w/o labels	77.9	0 -				0.0
	D-MAE-Tiny (ours)	IN1K w/o labels	78.4	0	3 6 9 12	0 3 Lave	6 9 12 rs of DeiT-Tiny	010
		_		L	ayers of DeiT-Tiny	Layer	is of Doris Tilly	

Datasets	Flowers	Pets	Aircraft	Cars	CIFAR100	iNat18	COCO(det.)	COCO(seg.)	
Init.	(2k/6k/102)	(4k/4k/37)	(7k/3k/100)	(8k/8k/196)	k/8k/196) (50k/10k/100) (438k/24k/8142)		(118k/	(118k/50k/80)	
supervised DeiT-Tiny	96.4	93.1	73.5	85.6	85.8	63.6	40.4	35.5	
self-supervised									
MoCov3-Tiny	94.8	87.8	73.7	83.9	83.9	54.5	39.7	35.1	
MAE-Tiny	85.8	76.5	64.6	78.8	78.9	60.6	39.9	35.4	
DINO-Tiny	95.6	89.3	73.6	84.5	84.7	58.7	41.4	36.7	
SimMIM-Tiny	77.2	68.9	55.9	70.4	77.7	60.8	39.3	34.8	
D-MAE-Tiny (ours)	95.2	89.1	79.2	87.5	85.0	63.6	42.3	37.4	

Conclusion

Summary

An empirical study of the **pre-training of lightweight ViTs**

- A practical guide
- Analyses on the pre-trained models
- A pre-training distillation approach

Paper

10/10

On Machine Leo

jin.gao@nlpr.ia.ac.cn

