



### Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping

Baorui Ma<sup>1</sup> Yu-Shen Liu<sup>1</sup> Zhizhong Han<sup>2</sup> <sup>1</sup>School of Software, Tsinghua University, Beijing 100084, P. R. China <sup>2</sup>Department of Computer Science, Wayne State University, Detroit, USA.

Project page: https://github.com/mabaorui/Noise2NoiseMapping

Code & Data:



# Background

- Signed Distance Functions (SDFs) have been successful in representing high resolution shapes with complex topology.
- Signed distance s =f(Condition c, Query q)
- Current methods still struggle from learning SDFs from noisy point clouds without ground truth signed distances, point normals or clean point clouds:
- We propose to learn SDFs via a noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations.



## **Related works**

- Current solutions significantly affect the accuracy of SDFs learned for noisy point clouds, either caused by poor generalization or the incapability of denoising.
  - IMLS, POCO, Cocc
- These methods need the expensive pairs of the corrupted inputs and clean targets to learn the denoising,
- By introducing a novel loss function containing a geometric consistency regularization, we are enabled to learn a SDF via a task of learning a mapping from one corrupted observation to another corrupted observation or even a mapping from one corrupted observation to the observation itself.

[IMLS]: Deep implicit moving least-squares functions for 3D reconstruction, CVPR 2021. [POCO]: POCO: Point convolution for surface reconstruction, CVPR 2022. [Cocc]: Convolutional occupancy networks, ECCV, 2020. It is import to learn *signed distance functions (SDFs)* from *3D point clouds* in various tasks, such as surface reconstruction and point cloud denoising.

The latest methods struggle to learn *SDFs* from *noisy point clouds*.



Our method can learn SDFs directly from noisy point clouds without supervision or point normal.

We introduce to learn SDFs via Noise to Noise mapping.

Given  $N \ge 1$  corrupted observations from an object or scene, we learn SDFs  $f_A$ 



| <b>Point Cloud Denoising</b> |     |     |      |    |  |  |  |  |  |  |  |
|------------------------------|-----|-----|------|----|--|--|--|--|--|--|--|
| Noise                        | TTD | SBP | Ours | GT |  |  |  |  |  |  |  |
|                              |     |     |      |    |  |  |  |  |  |  |  |
| Contraction of the second    |     |     |      |    |  |  |  |  |  |  |  |
|                              |     |     |      |    |  |  |  |  |  |  |  |
|                              |     |     |      | 5  |  |  |  |  |  |  |  |
|                              |     |     |      |    |  |  |  |  |  |  |  |
|                              |     |     |      |    |  |  |  |  |  |  |  |

| Poi   | Point Number 10K(Sparse) |       |       | 50K(Dense) |       |        |                |                                            |       |       |       |        |       |
|-------|--------------------------|-------|-------|------------|-------|--------|----------------|--------------------------------------------|-------|-------|-------|--------|-------|
| Noise |                          | 1%    |       | 2%         |       | 3%     |                | 1%                                         |       | 2%    |       | 3%     |       |
|       | Model                    | CD    | P2M   | CD         | P2M   | CD     | P2M            | CD                                         | P2M   | CD    | P2M   | CD     | P2M   |
| ΡU    | Bilateral                | 3.646 | 1.342 | 5.007      | 2.018 | 6.998  | 3.557          | 0.877                                      | 0.234 | 2.376 | 1.389 | 6.304  | 4.730 |
|       | Jet                      | 2.712 | 0.613 | 4.155      | 1.347 | 6.262  | 2.921          | 0.851                                      | 0.207 | 2.432 | 1.403 | 5.788  | 4.267 |
|       | MRPCA                    | 2.972 | 0.922 | 3.728      | 1.117 | 5.009  | 1.963          | 0.669                                      | 0.099 | 2.008 | 1.003 | 5.775  | 4.081 |
|       | GLR                      | 2.959 | 1.052 | 3.773      | 1.306 | 4.909  | 2.114          | 0.696                                      | 0.161 | 1.587 | 0.830 | 3.839  | 2.707 |
|       | PCNet                    | 3.515 | 1.148 | 7.469      | 3.965 | 13.067 | 8.737          | 1.049                                      | 0.346 | 1.447 | 0.608 | 2.289  | 1.285 |
|       | GPDNet                   | 3.780 | 1.337 | 8.007      | 4.426 | 13.482 | 9.114          | 1.913                                      | 1.037 | 5.021 | 3.736 | 9.705  | 7.998 |
|       | DMR                      | 4.482 | 1.722 | 4.982      | 2.115 | 5.892  | 2.846          | 1.162                                      | 0.469 | 1.566 | 0.800 | 2.632  | 1.528 |
|       | SBP                      | 2.521 | 0.463 | 3.686      | 1.074 | 4.708  | 1.942          | 0.716                                      | 0.150 | 1.288 | 0.566 | 1.928  | 1.041 |
|       | TTD-Un                   | 3.390 | 0.826 | 7.251      | 3.485 | 13.385 | 8.740          | 1.024                                      | 0.314 | 2.722 | 1.567 | 7.474  | 5.729 |
|       | SBP-Un                   | 3.107 | 0.888 | 4.675      | 1.829 | 7.225  | 3.726          | 0.918                                      | 0.265 | 2.439 | 1.411 | 5.303  | 3.841 |
|       | Ours                     | 1.060 | 0.241 | 2.925      | 1.010 | 4.221  | 1.847          | 0.377                                      | 0.155 | 1.029 | 0.484 | 1.654  | 0.972 |
|       | Bilaterall               | 4.320 | 1.351 | 6.171      | 1.646 | 8.295  | 2.392          | 1.172                                      | 0.198 | 2.478 | 0.634 | 6.077  | 2.189 |
|       | Jet                      | 3.032 | 0.830 | 5.298      | 1.372 | 7.650  | 2.227          | 1.091                                      | 0.180 | 2.582 | 0.700 | 5.787  | 2.144 |
|       | MRPCA                    | 3.323 | 0.931 | 4.874      | 1.178 | 6.502  | 1.676          | 0.966                                      | 0.140 | 2.153 | 0.478 | 5.570  | 1.976 |
|       | GLR                      | 3.399 | 0.956 | 5.274      | 1.146 | 7.249  | 1.674          | 0.964                                      | 0.134 | 2.015 | 0.417 | 4.488  | 1.306 |
| PC    | PCNet                    | 3.849 | 1.221 | 8.752      | 3.043 | 14.525 | 5.873          | 1.293                                      | 0.289 | 1.913 | 0.505 | 3.249  | 1.076 |
|       | GPDNet                   | 5.470 | 1.973 | 10.006     | 3.650 | 15.521 | 6.353          | 5.310                                      | 1.716 | 7.709 | 2.859 | 11.941 | 5.130 |
|       | DMR                      | 6.602 | 2.152 | 7.145      | 2.237 | 8.087  | 2.487          | 1.566                                      | 0.350 | 2.009 | 0.485 | 2.993  | 0.859 |
|       | SBP                      | 3.369 | 0.830 | 5.132      | 1.195 | 6.776  | 1.941          | 1.066                                      | 0.177 | 1.659 | 0.354 | 2.494  | 0.657 |
|       | Ours                     | 2.047 | 0.518 | 2.056      | 0.519 | 5.331  | 1.935          | 0.426                                      | 0.129 | 1.043 | 0.316 | 2.22   | 1.096 |
| 0     | Noisy Scene              |       |       |            |       |        | Denoised Scene |                                            |       |       |       |        |       |
|       | CONTRACTOR OF THE TRACE  |       |       |            |       |        |                | Capity B. C. Cold Minister The Cold States |       |       |       |        |       |







### PSR PSG **R2N2** Atlas COcc SAP **OCNN** IMLS 0.437 0.102 0.151 0.064 0.034 0.027 0.063 0.025 airplane **Surface Reconstruction for Shapes** 0.544 0.073 0.035 0.032 0.128 0.153 0.065 0.030 bench 0.047 0.037 0.154 0.112 0.071 0.035 cabinet 0.164 0.167 0.180 0.132 0.197 0.099 0.075 0.045 0.077 0.040 car Noisy input COcc IMLS GT Ours 0.168 0.181 0.046 0.036 0.066 0.035 chair 0.369 0.114 0.280 0.160 0.089 0.036 0.030 0.066 0.029 display 0.1700.278 lamp 0.207 0.243 0.137 0.059 0.047 0.067 0.031 0.148 0.205 0.199 0.142 0.063 0.041 0.073 0.040 speaker 0.409 0.091 0.167 0.051 0.028 0.023 0.062 0.021 rifle 0.091 0.041 0.032 0.227 0.144 0.160 0.066 0.031 sofa table 0.393 0.166 0.177 0.102 0.038 0.033 0.066 0.032 telephone 0.281 0.110 0.130 0.054 0.027 0.023 0.061 0.023 0.078 0.043 0.030 0.064 0.027 vessele 0.181 0.130 0.169 0.044 0.034 0.067 0.031 0.299 0.147 0.173 0.093 mean Noisy input IGR P2S NP Ours

POCO

0.023

0.028

0.037

0.041

0.033

0.028

0.033

0.041

0.019

0.030

0.031

0.022

0.025

0.030

GT

Ours

0.022

0.025

0.034

0.037

0.026

0.022

0.027

0.033

0.019

0.027

0.028

0.017

0.024

0.026



### **Surface Reconstruction for Scenes**



Visualization of Optimization -Learned Signed Distance Functions-

### **Thanks for watching!**

https://github.com/mabaorui/Noise2NoiseMapping

