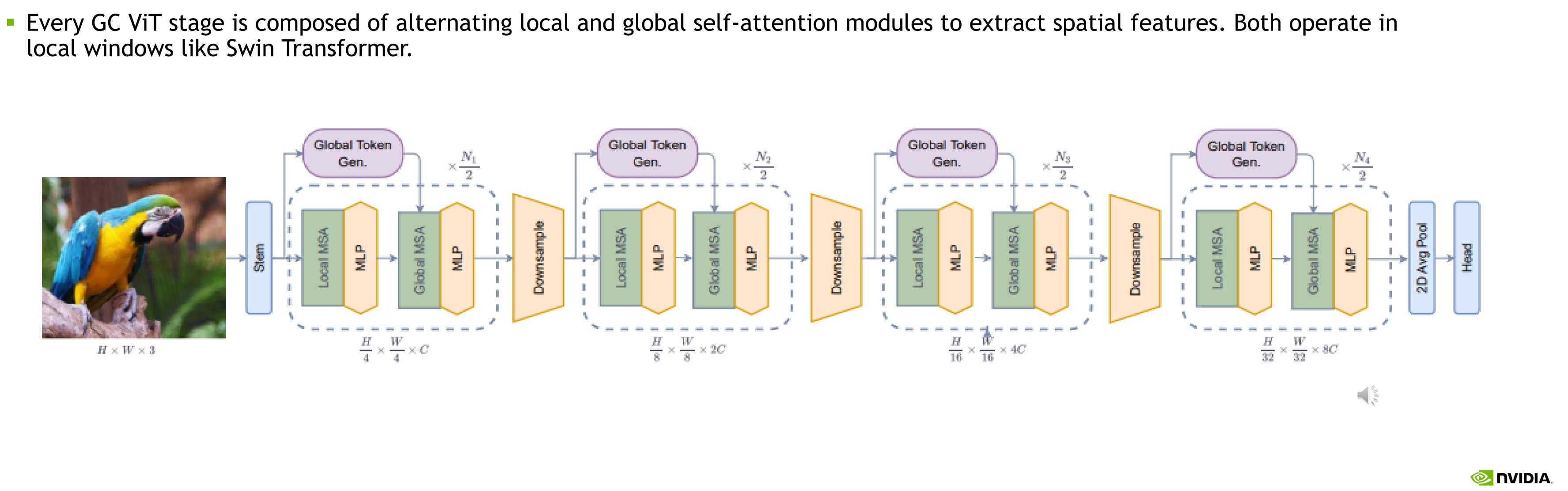
GLOBAL CONTEXT VISION TRANSFORMERS ALI HATAMIZADEH, HONGXU (DANNY) YIN, GREG HEINRICH, JAN KAUTZ, PAVLO MOLCHANOV

- computational constrains.
- local windows like Swin Transformer.

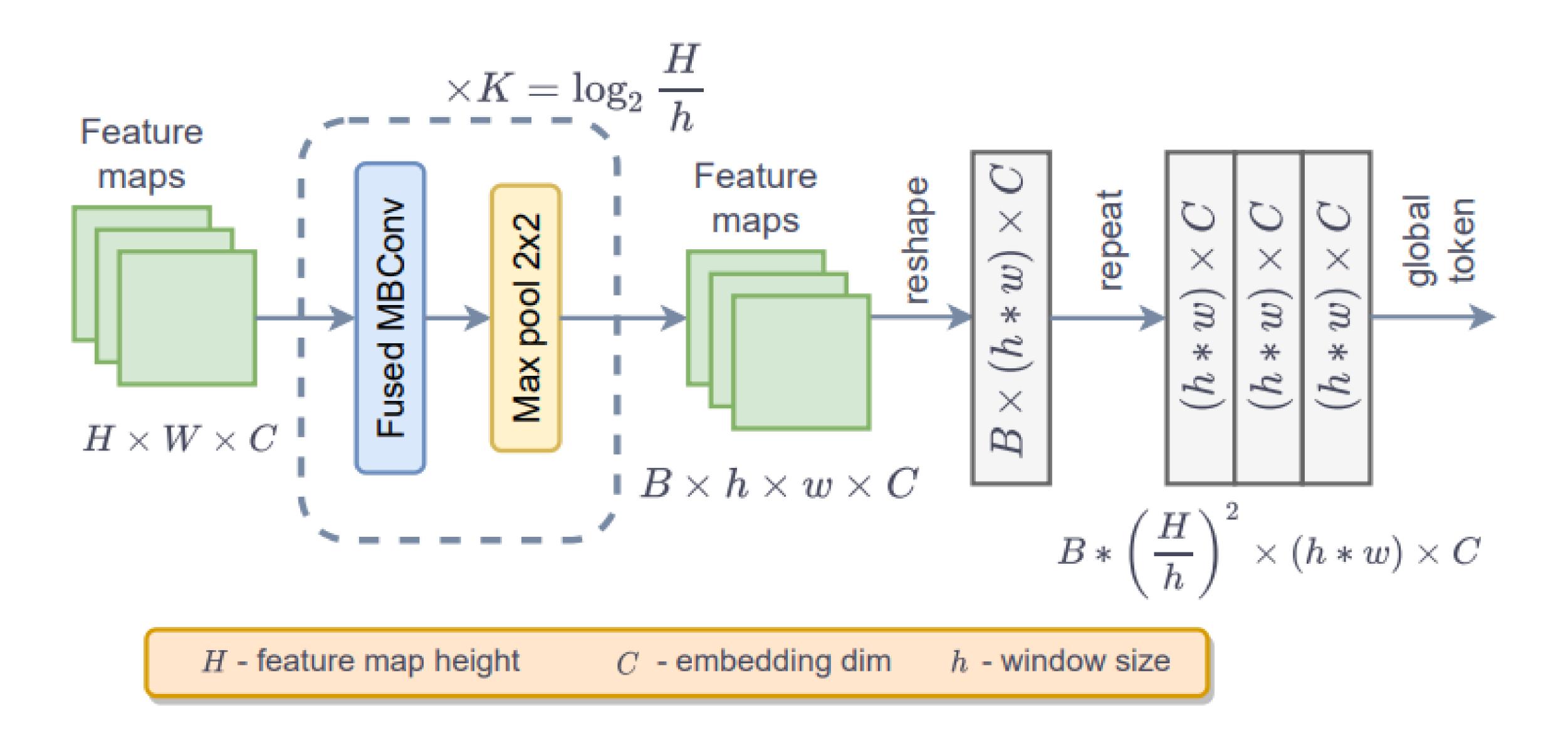


MOTIVATION Can we model global context more efficient?

• Our goal is to create a new transformer model which can accurately model both local and global information without imposing

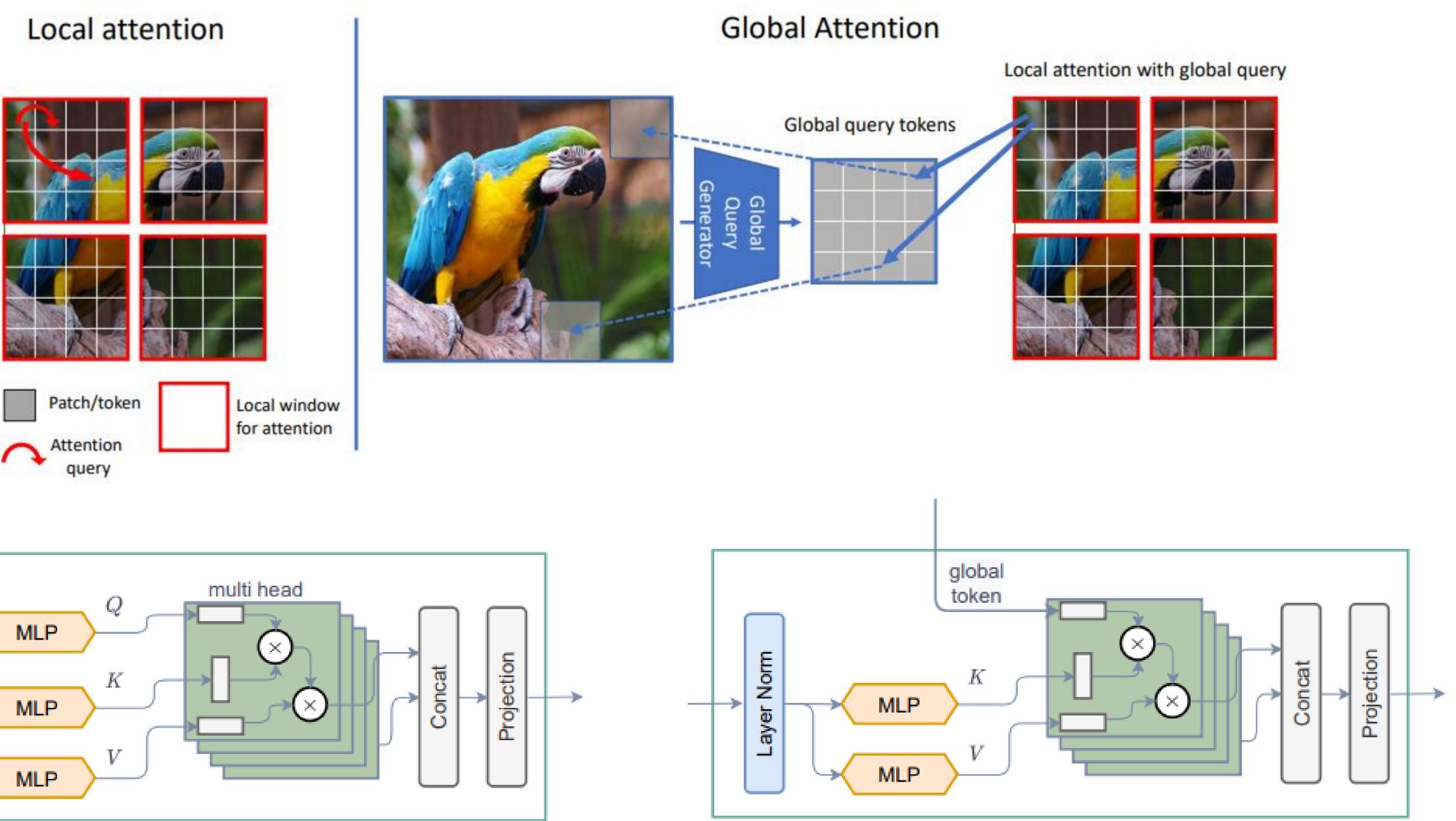
• We propose Global Context (GC) Vision Transformers which models both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows.

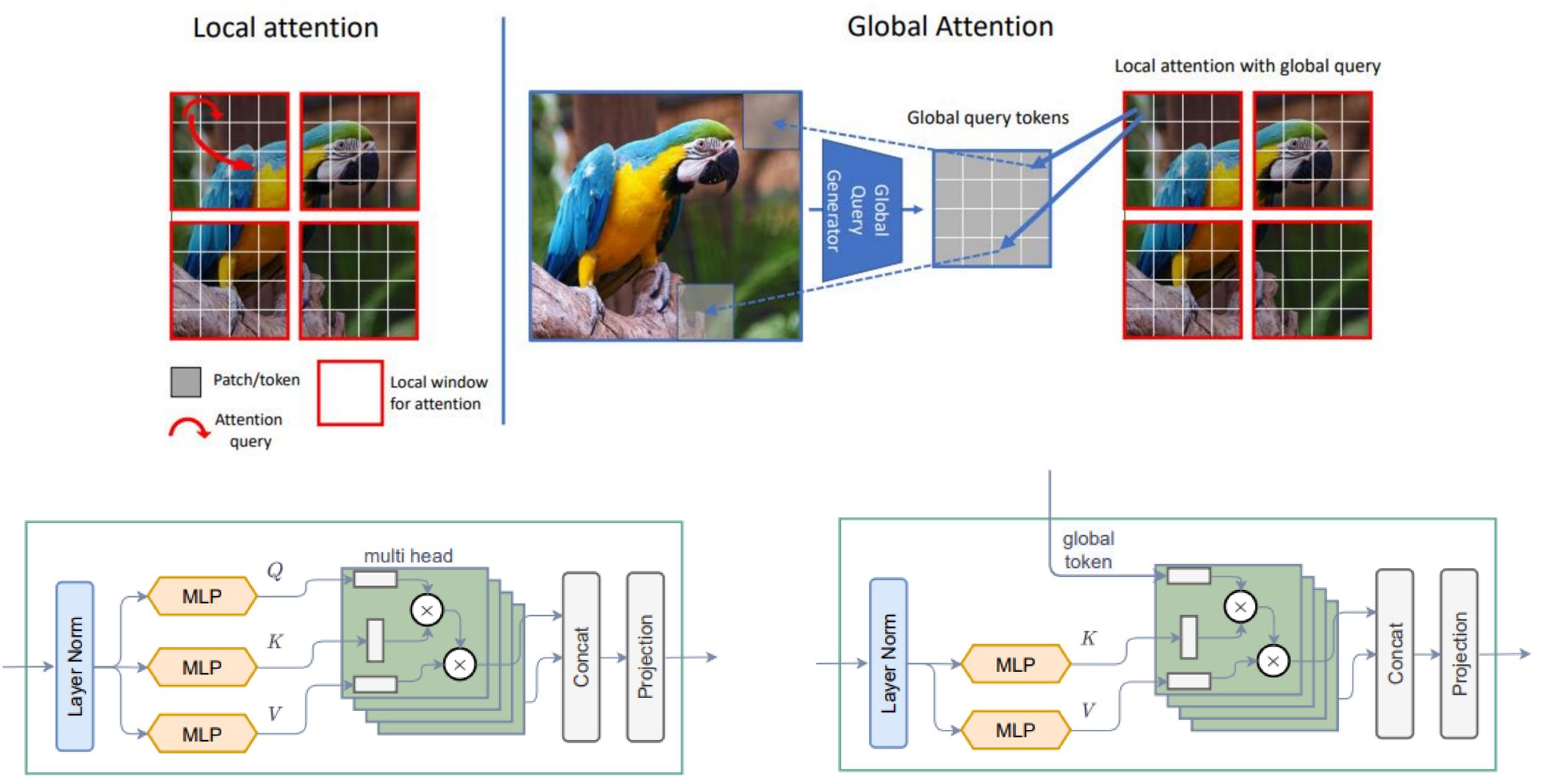
• We propose to generate global query tokens that encompass information across the entire input feature maps for interaction with local key and value features.



METHODOLOGY Global Token Generator

operating in the window





METHODOLOGY **Global Attention**

• Local self-attention can only query patches within a local window, whereas with global attention can query image globally while still

Local MSA

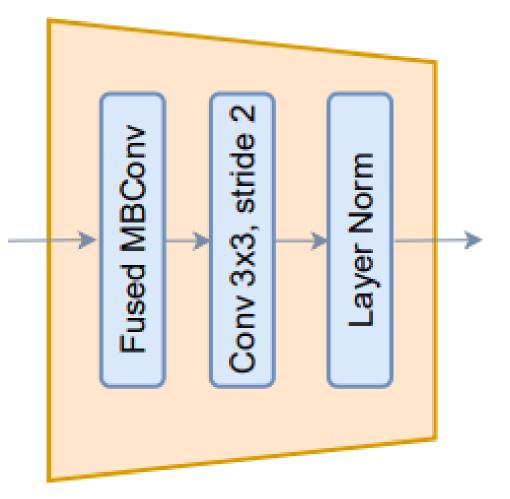
Global MSA

reducing dimensions.

operator according to:

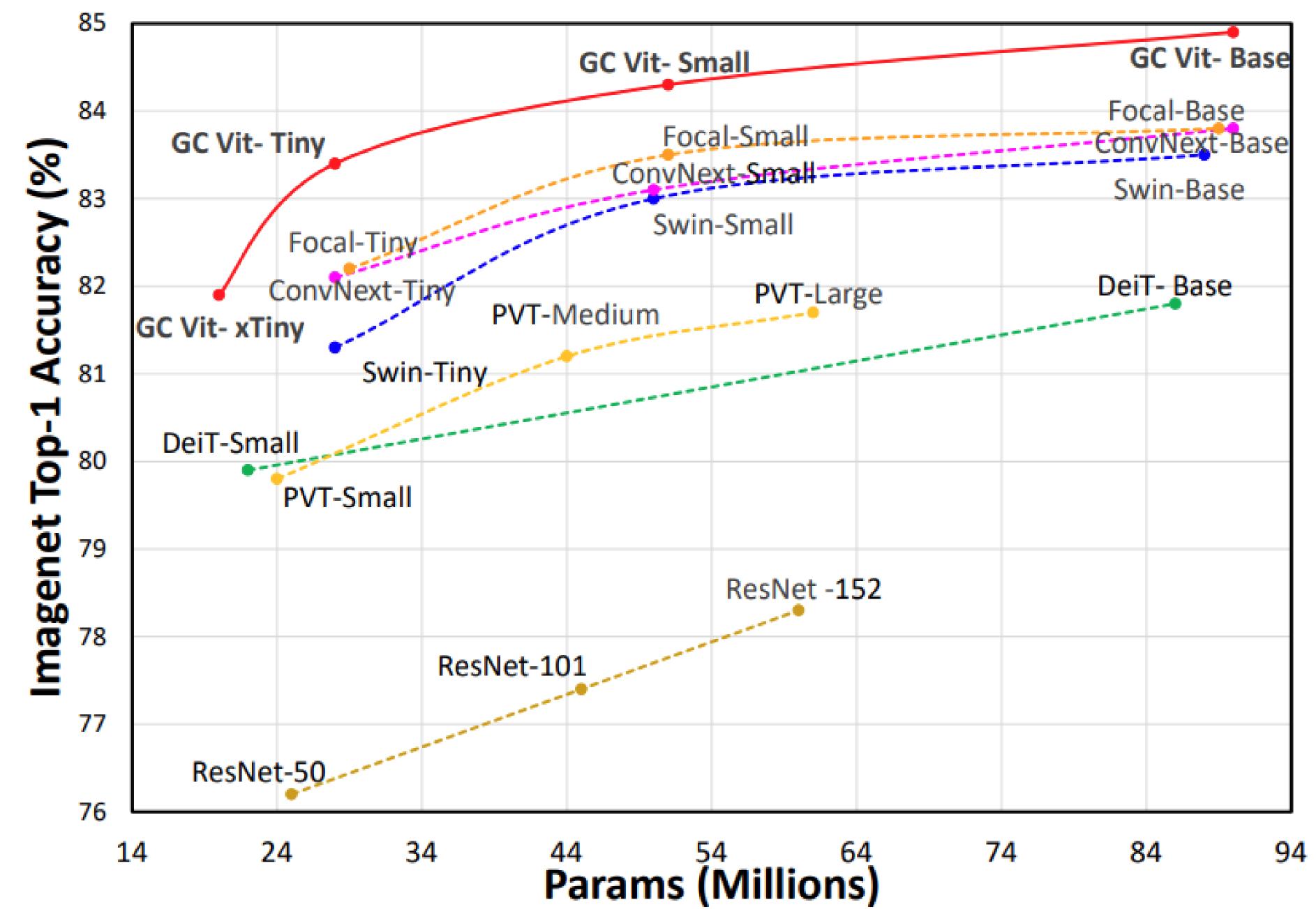
METHODOLOGY Downsampling

• We borrow an idea of spatial feature contraction from CNN models that imposes locality bias and cross channel communication while



• We use a modified Fused-MBConv block, followed by a max pooling layer with a kernel size of 3 and stride of 2 as a downsampling

$$\begin{aligned} \hat{\mathbf{x}} &= \text{DW-Conv}_{3\times 3}(\mathbf{x}), \\ \hat{\mathbf{x}} &= \text{GELU}(\hat{\mathbf{x}}), \\ \hat{\mathbf{x}} &= \text{SE}(\hat{\mathbf{x}}), \\ \mathbf{x} &= \text{Conv}_{1\times 1}(\hat{\mathbf{x}}) + \mathbf{x}, \end{aligned}$$



EXPERIMENTS ImageNet-1K Classifcation

• Our model achieves new SOTA benchmarks for accuracy vs number of parameters/FLOPs tradeoff.

• Models with GC ViT backbones archive strong performance for object detection and instance segmentation on MS COCO dataset.

Backbone

Swin-T (Liu et al., 2021) ConvNeXt-T (Liu et al., 20 GC ViT-T

DeiT-Small/16 (Touvron et ResNet-50 (He et al., 2016 Swin-T (Liu et al., 2021) ConvNeXt-T (Liu et al., 20 GC ViT-T

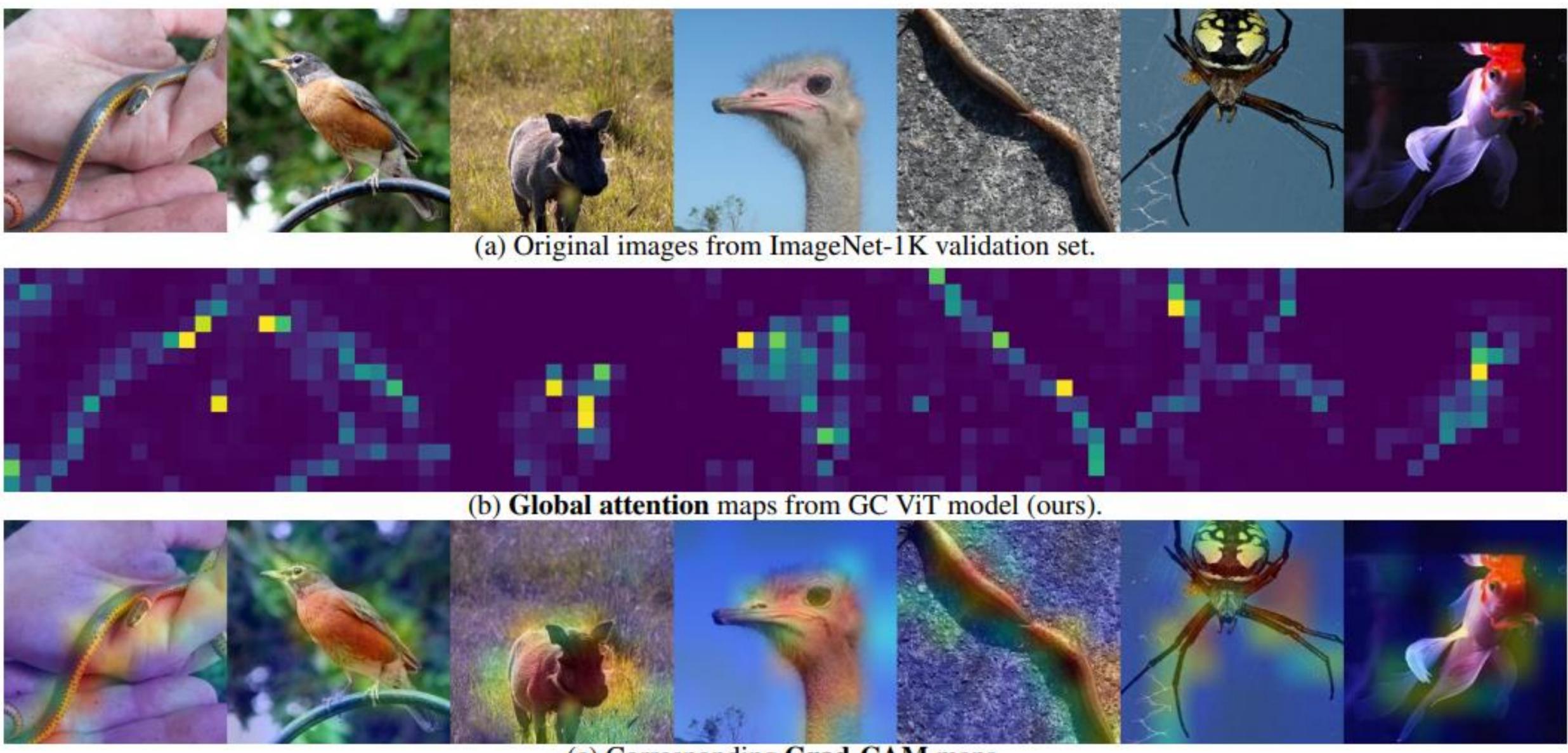
X101-32 (Xie et al., 2017) Swin-S (Liu et al., 2021) ConvNeXt-S (Liu et al., 20 GC ViT-S

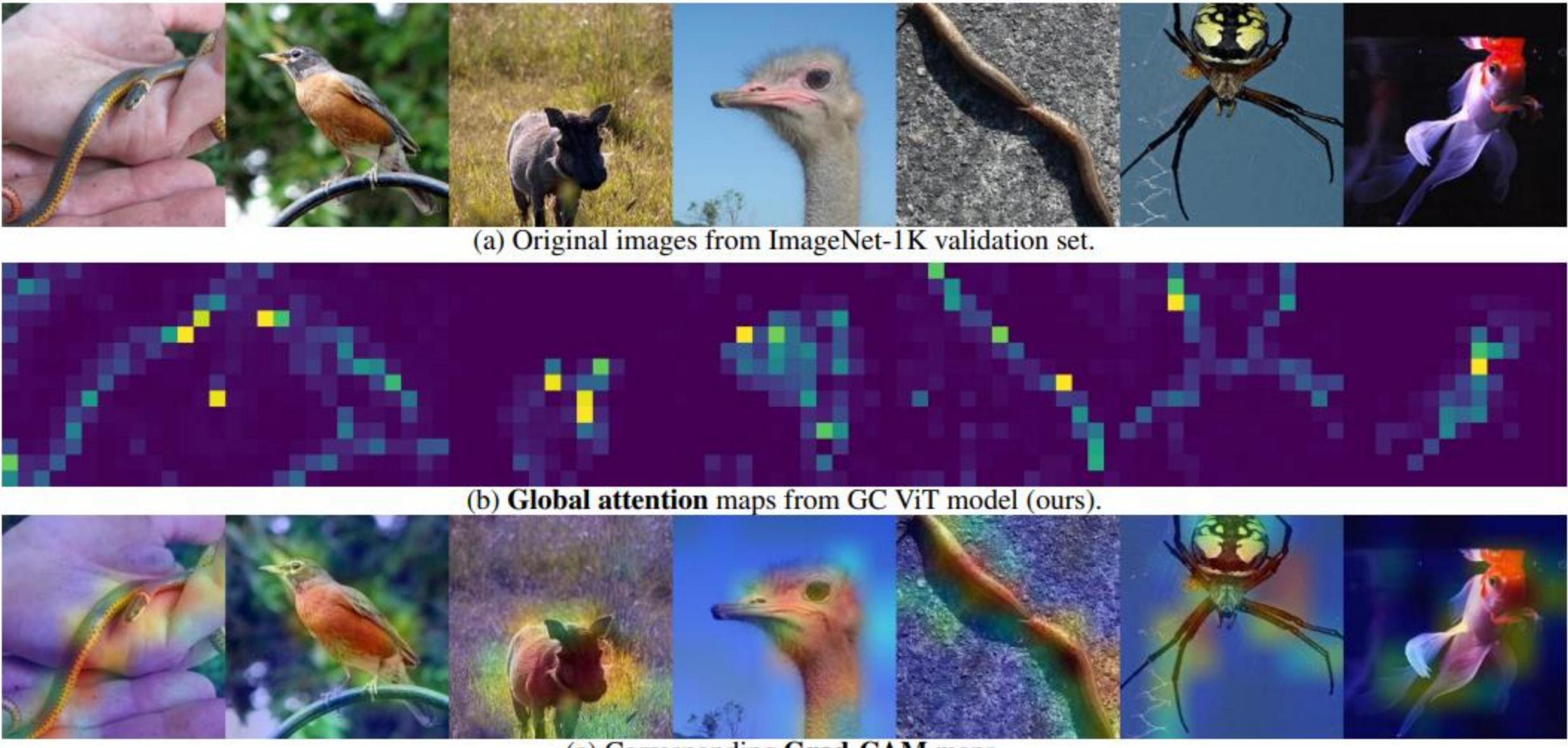
X101-64 (Xie et al., 2017) Swin-B (Liu et al., 2021) ConvNeXt-B (Liu et al., 20 GC ViT-B

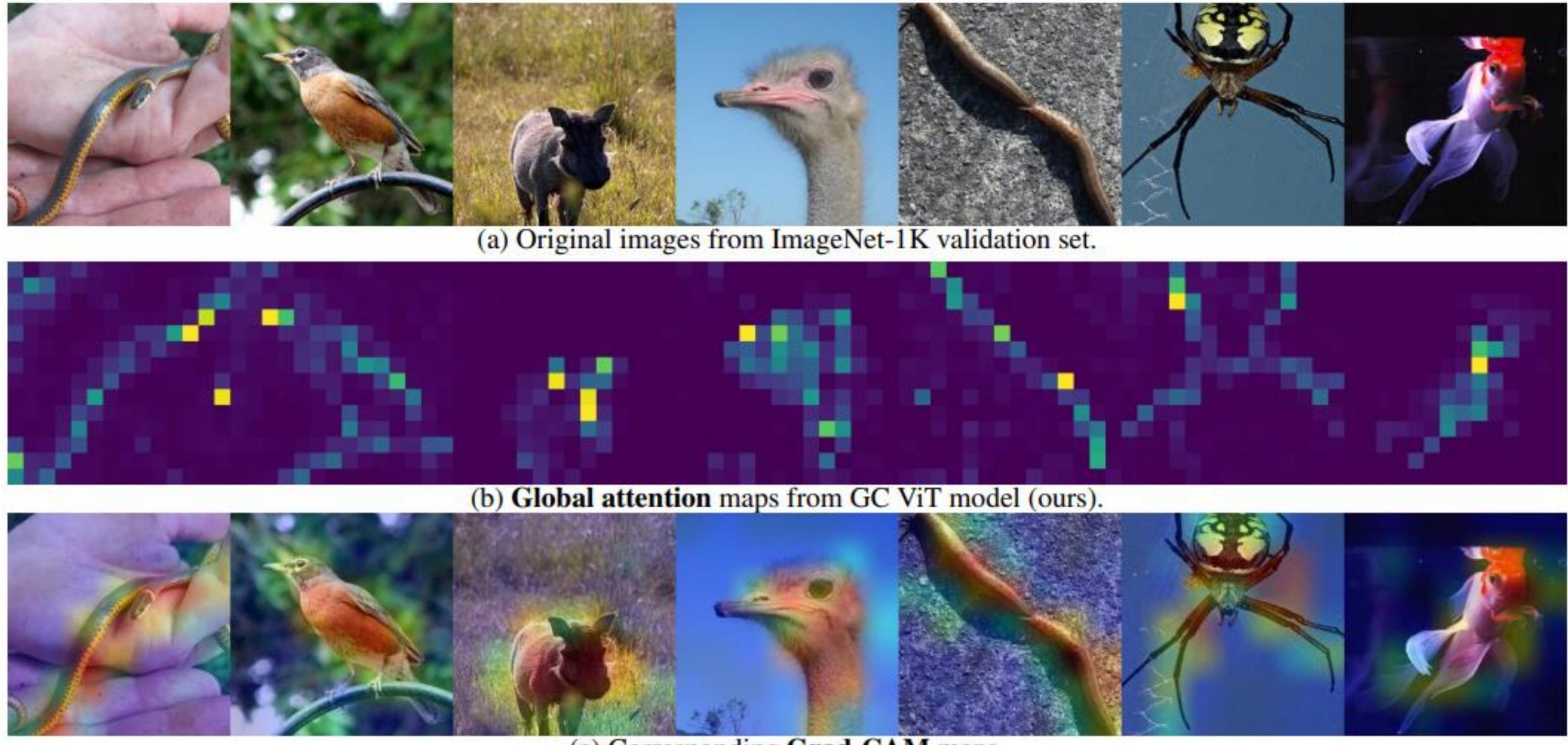
EXPERIMENTS MS COCO Detection/Instance Segmentation

	Param (M)	FLOPs (G)	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
	Μ	ask-RCNN 3×	schedule					
	48	267	46.0	68.1	50.3	41.6	65.1	44.9
2022b)	48	262	46.2	67.9	50.8	41.7	65.0	44.9
	48	291	47.9	70.1	52.8	43.2	67.0	46.7
	Cascad	le Mask-RCNN	$3 \times \text{schee}$	lule				
et al., 2021)	80	889	48.0	67.2	51.7	41.4	64.2	44.3
6)	82	739	46.3	64.3	50.5	40.1	61.7	43.4
	86	745	50.4	69.2	54.7	43.7	66.6	47.3
2022b)	86	741	50.4	69.1	54.8	43.7	66.5	47.3
	85	770	51.6	70.4	56.1	44.6	67.8	48.3
7)	101	819	48.1	66.5	52.4	41.6	63.9	45.2
	107	838	51.9	70.7	56.3	45.0	68.2	48.8
2022b)	108	827	51.9	70.8	56.5	45.0	68.4	49.1
	108	866	52.4	71.0	57.1	45.4	68.5	49.3
7)	140	972	48.3	66.4	52.3	41.7	64.0	45.1
i de la constante de la constan	145	982	51.9	70.5	56.4	45.0	68.1	48.9
2022b)	146	964	52.7	71.3	57.2	45.6	68.9	49.5
	146	1018	52.9	71.7	57.8	45.8	69.2	49.8

The associated feature maps uncovered by the global self-attention modules align with image semantics.







(c) Corresponding Grad-CAM maps.

- global query tokens and interact with local regions.
- and ViT-based counterparts by a significant margin.
- resolution images using MS COCO datasets.
- Code and pre-trained models are available:

CONCLUSION

• In this work, we introduced a novel hierarchical ViT, referred to as GC ViT, which can efficiently capture global context by utilizing

• We achieve new SOTA benchmarks for image classification across various model sizes on ImageNet-1K dataset, and surpasses both CNN

• We have also achieved SOTA or competitive performance for downstream tasks of obect detection and instance segmentation on high-

https://github.com/NVlabs/GCVit

