Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond

Itai Kreisler, Mor Shpigel Nacson, Daniel Soudry, Yair Carmon

Tel-Aviv University , Technion

Motivation: the edge of stability phenomenon

Cohen et al. (2021)

Gradient descent on neural networks typically occurs at the edge of stability

Explaining EoS convergence via gradient flow solution sharpness

GFS(w) = the end of the gradient flow trajectory starting from w $\phi(w)$ = the GFS sharpness of $w = \lambda_{max} (\nabla^2 \mathcal{L}(GFS(w)))$

Explaining EoS convergence via gradient flow solution sharpness

$$\mathcal{L}(\boldsymbol{w}) \approx 0 \implies \phi(\boldsymbol{w}) \approx \lambda_{\max} \big(\nabla^2 \mathcal{L}(\boldsymbol{w}) \big)$$

Understanding $\lim_{t\to\infty} \phi(w^{(t)})$ allow us to understand EoS convergence

Theory for scalar networks

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{2} (w_1 w_2 w_3 \cdots w_D - 1)^2$$

Theorem (*Informal*): Under a weak assumption on the initialization $w^{(0)}$ then for all $t \ge 0$:

- The assumption hold for $w^{(t)}$
- $\phi(\boldsymbol{w}^{(t+1)}) \le \phi(\boldsymbol{w}^{(t)})$

Theorem (*Informal*): If for some $t \ge 0$ and $\delta \in (0,0.4)$, the assumption hold for $w^{(t)}$, $\phi(w^{(t)}) = \frac{2-\delta}{\eta}$ and $\mathcal{L}(w^{(t)}) = \mathcal{O}(\delta^2)$ then: • $\lim_{k \to \infty} \phi(w^{(k)}) \ge \frac{2(1-\delta)}{\eta}$

• The loss converges exponentially to 0

Experiments: neural networks

Experiments: squared regression model

 $f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \langle \boldsymbol{u}_{+}^2 - \boldsymbol{u}_{-}^2, \boldsymbol{x} \rangle$

The GFS can be efficiently calculated

Thanks!