Symmetry－Aware Robot Design

Heng Dong ${ }^{1}$ ，Junyu Zhang ${ }^{2}$ ，Tonghan Wang ${ }^{3}$ ，Chongjie Zhang ${ }^{1}$ ${ }^{1}$ IIIS，Tsinghua University，${ }^{2}$ Huazhong University of Science and Technology，${ }^{3}$ Harvard University
https：／／sites．google．com／view／robot－design

Machine Intelligence Group

Creator of Robots

－Humans have been dreaming of creating creatures with embodied intelligence for decades．

Movie：I Robot

Series：Westworld

Learning to Design and Control Robots

- Learning to design and control robots can be framed as a bi-level optimization problem

- Search in the immensely large design space
- Evaluate each candidate design, which is computationally expensive

Previous Work

- The robots designed by previous SOTA Transform2Act (Yuan et al. 2021) are intuitively abnormal, empirically hard to control, and ultimately result in poor performance.

Task: running forward
Result: the robot deviated from the right direction

Task: reaching random goals
Result: the robot missed the goal

Our Idea

- We utilize symmetry as the key characteristic to unveil the structure of the design space and hereby reduce learning complexity.

Drosophila (fruit fly)

Radial

Actinomorphic flower e.g. lilies

Spherical symmetry

Coccus bacteria e.g Streptococcus

Symmetry is one structure commonly observed in biological organisms

Why Symmetry? from Learning Perspective

- Searching for much fewer robot designs
- If one design turns out to be unsuitable for the current task, other designs from the same symmetry can be searched less frequently as they are likely to be morphologically and functionally similar.
- Symmetric designs can reduce the degree of control required to learn balancing

Task: running forward

No symmetry

Bilateral symmetry

Is Bilateral Symmetry All You Need?

- Perhas not, different tasks may require different symmetries.

Task: running forward bilateral symmetry

Task: reaching random goals radial symmetry

SARD: Symmetry-Aware Robot Design

- Use the subgroups of Dihedral group $\left(G=\operatorname{Dih}_{4}\right)$ to represent all kinds of symmetries.

Searching for the Optimal Symmetry

- Exploit the structure of subgroups by smoothly changing the symmetry

Searching for the Optimal Symmetry

- Exploit the structure of subgroups by smoothly changing the symmetry

Searching for the Optimal Symmetry

- Exploit the structure of subgroups by smoothly changing the symmetry

Searching for the Optimal Symmetry

- Exploit the structure of subgroups by smoothly changing the symmetry

Searching for the Optimal Symmetry

- Exploit the structure of subgroups by smoothly changing the symmetry

Structured Subgroups of Dih_{4}
(a)

(b)
(c)

Learning Robot Design under a Given Symmetry

－The design stage is divided into two substages

Learning Robot Design under a Given Symmetry

- The design stage is divided into two substages
- Skeleton Design Stage generates the skeletal graph

Learning Robot Design under a Given Symmetry

- The design stage is divided into two substages
- Attribute Design Stage generates motor strength, limb size, etc.

Overall Framework

- SARD: Symmetry-Aware Robot Design

Structured Subgroups of Dih_{4}
(a)

(b)
(c)

Experiments

- We test our method on all kinds of tasks

Training Performance Comparison

*upper left corner: one representative robot designed by SARD at the end of training.

Visualization of the Learned Robots

Robot Design Analysis for Patrol Task

Generalization of the Learned Symmetry

- 3/4 of the experiments ended up with $H_{2,0}$ and $H_{1,0}$

Machine Intelligence Group

