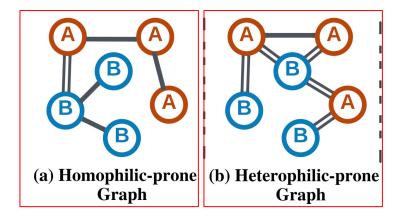


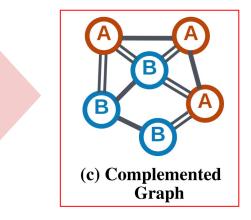
Finding the Missing-half: Graph Complementary Learning for Homophily-prone and Heterophily-prone Graphs

Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, Shirui Pan

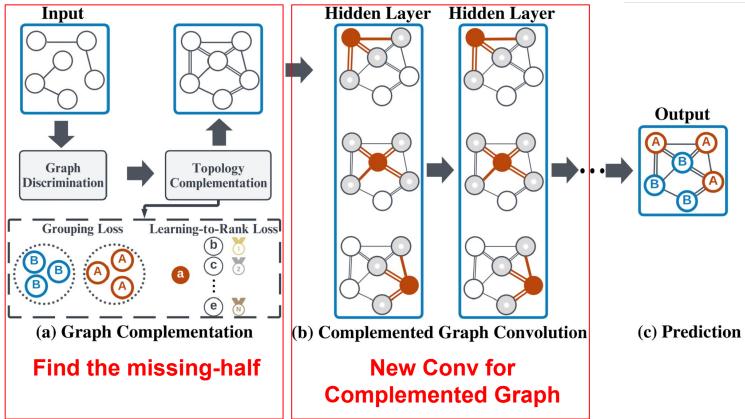
Existing problem

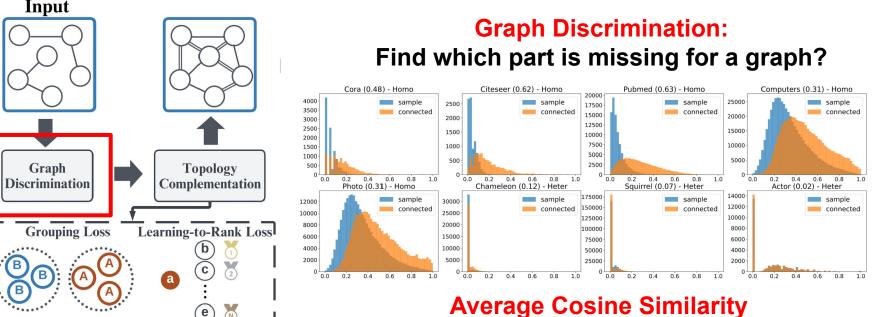
Real-World Graph have only one kind of tendency.


(a) Connecting same class → Homophilic-prone
(b) Connecting different class -> Heterophilic-prone

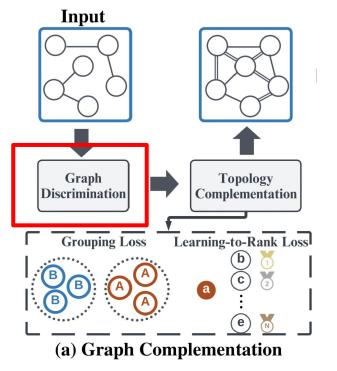

Existing GNNs only take the original graph during training.

Existing problem

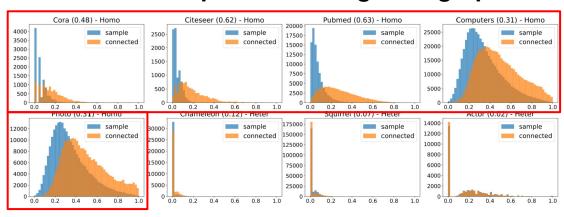

Could we find the missing-half to complement the graph?



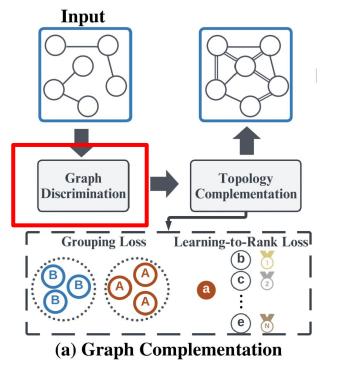
Enriched Structural Information!!

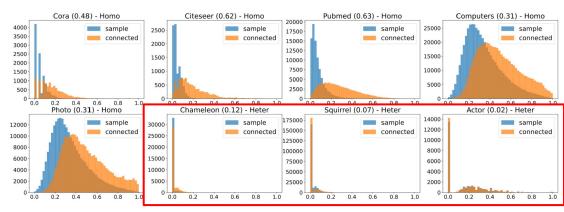


(a) Graph Complementation

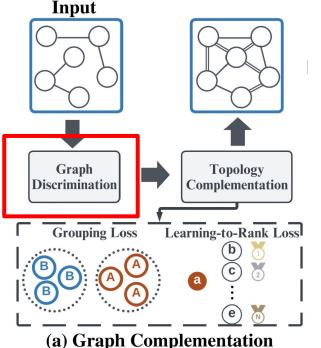

Average Cosine Similarity (Random sampled pairs) VS (Connected node pairs)

Find the missing-half

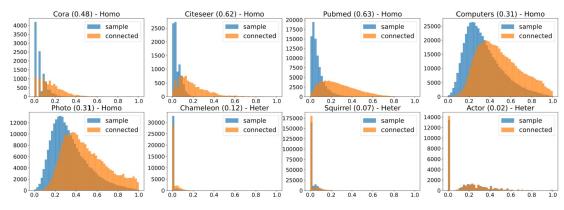

Graph Discrimination: Find which part is missing for a graph?


Homophilic-prone graph Connected different from Sampled!

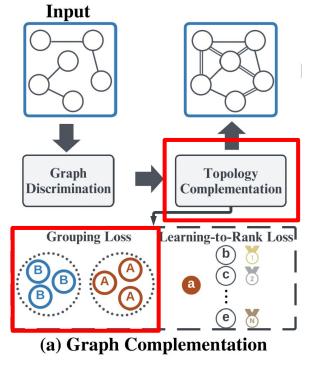
Find the missing-half


Graph Discrimination: Find which part is missing for a graph?

Heterophilic-prone graph Connected similar to Sample!


Find the missing-half

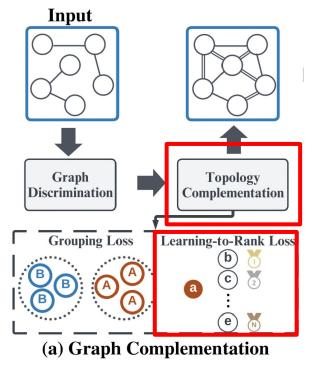
Find the missing-half


Graph Discrimination: Find which part is missing for a graph?

K-S statistics (evaluation of distribution difference) > 0.2

- \rightarrow homophilic-prone graph
- \rightarrow need to find heterophilic-prone structure
- \rightarrow Vice versa

Find the missing-half


Topology Complementation: Find the missing-half graph structure.

Grouping Loss

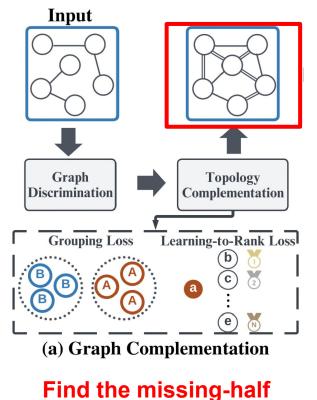
Maximise same class node similarity Minimise different class node similarity

$$\begin{split} \mathcal{L}_{pos} &= -log(sig(\frac{\sum_{(i,j)\in\mathbb{P}} \mathbf{Z}_{gc}^{T}[v_{i}] \cdot \mathbf{Z}_{gc}[v_{j}]}{|\mathbb{P}|}) + \epsilon), \\ \mathcal{L}_{neg} &= -log(1 - sig(\frac{\sum_{(i,j)\in\mathbb{N}} \mathbf{Z}_{gc}^{T}[v_{i}] \cdot \mathbf{Z}_{gc}[v_{j}]}{|\mathbb{N}|} + \epsilon)), \end{split}$$

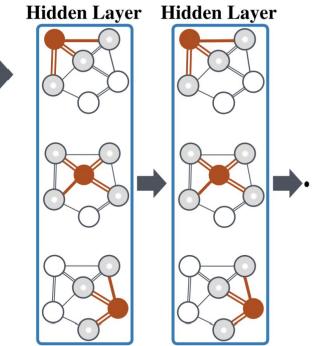
Find the missing-half

Topology Complementation: Find the missing-half graph structure.

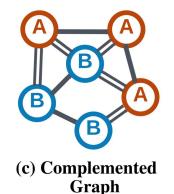
 $\underset{\mathcal{R}}{\mathsf{Learning-to-rank}} \mathsf{loss}$


(a)
$$cos(a, b) = 0.99$$
 (b)
 $cos(a, c) = 0.97$ (c)
 $cos(a, c) = 0.97$ (c)
 $cos(a, e) = 0.01$ (c)
For node a
most similar k same class nodes

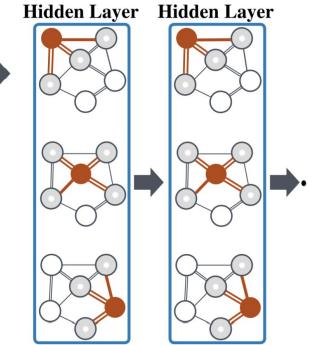
 \rightarrow least similar k different class nodes


 \rightarrow

A 2k list \rightarrow put nodes in correct rank



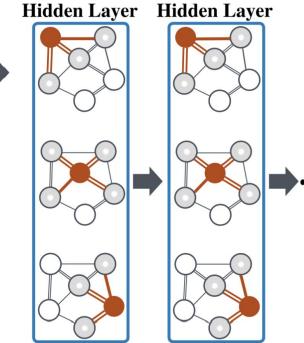
Topology Complementation: Find the missing-half graph structure. Two losses to train a MLP Generate node embeddings Find each node most similar/least similar neighbours (cosine sim) **Connect** them Done!



(b) Complemented Graph Convolution New Conv for Complemented Graph

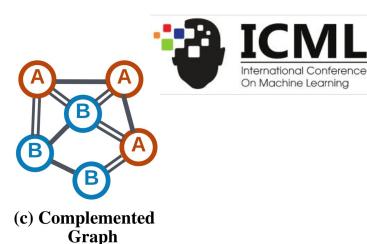
How to design a new graph convolution \rightarrow handle complemented graphs with both homophily- and heterophily-prone topology?

(b) Complemented Graph Convolution New Conv for Complemented Graph

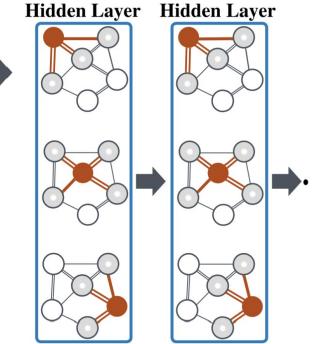

(c) Complemented Graph

B

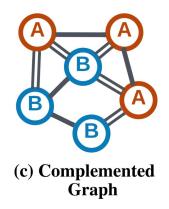
B


Maximise similarity for homophilic-connected nodes Minimise similarity for heterophilic-connected nodes

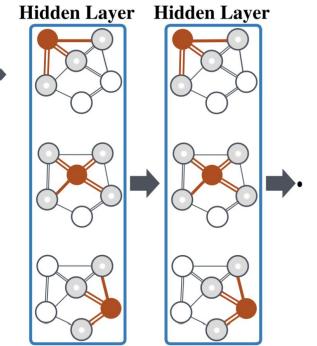
(b) Complemented Graph Convolution New Conv for Complemented Graph Minimise sim for heterophilic-connected


Maximise sim for

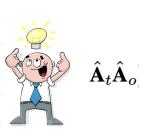
homophilic-connected

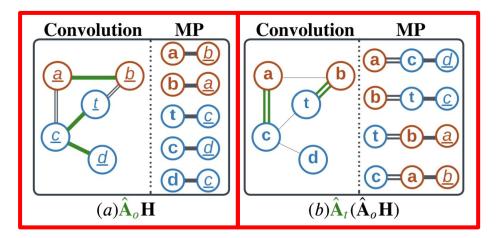

Two Objectives

$egin{aligned} \mathcal{O}_o &= \min_{\mathbf{H}}\{tr(\mathbf{H}^T(\mathbf{I}-\hat{\mathbf{A}}_o)\mathbf{H})\}\ &= rac{1}{2}\sum_{(i,j)\in\mathcal{E}}^E \hat{\mathbf{A}}_o[i,j] \parallel \mathbf{H}_i - \mathbf{H}_j \parallel^2,\ \mathcal{O}_t &= \min_{\mathbf{H}}\{tr(\mathbf{H}^T(\mathbf{I}+\hat{\mathbf{A}}_t)\mathbf{H})\}\ &= rac{1}{2}\sum_{(i,j)\in\mathcal{E}}^E \hat{\mathbf{A}}_t[i,j] \parallel \mathbf{H}_i + \mathbf{H}_j \parallel^2, \end{aligned}$

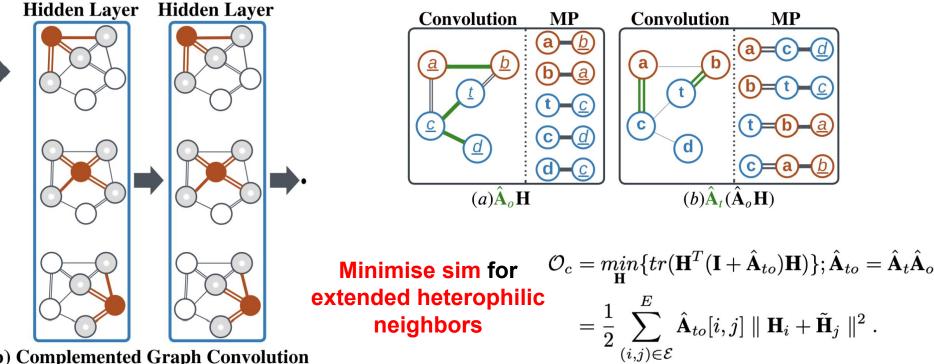


(b) Complemented Graph Convolution New Conv for Complemented Graph

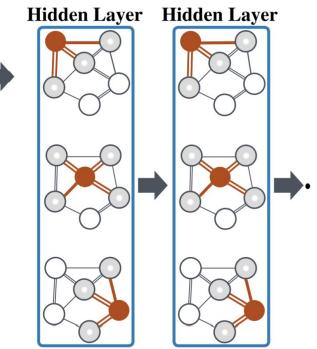



A step forward: any other objective? 🤔

(b) Complemented Graph Convolution New Conv for Complemented Graph



The heterophilic neighbors of homophilic neighors → still heterophilic-prone



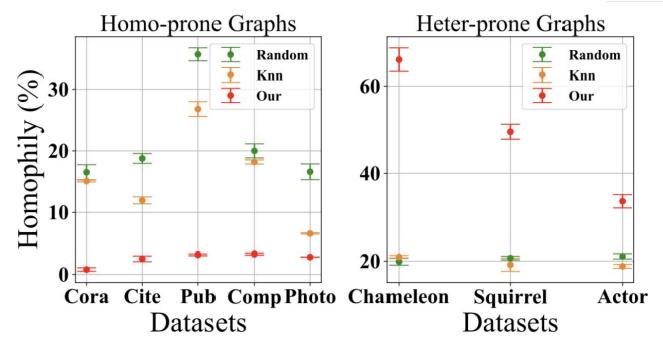
(b) Complemented Graph Convolution New Conv for Complemented Graph

(b) Complemented Graph Convolution New Conv for Complemented Graph

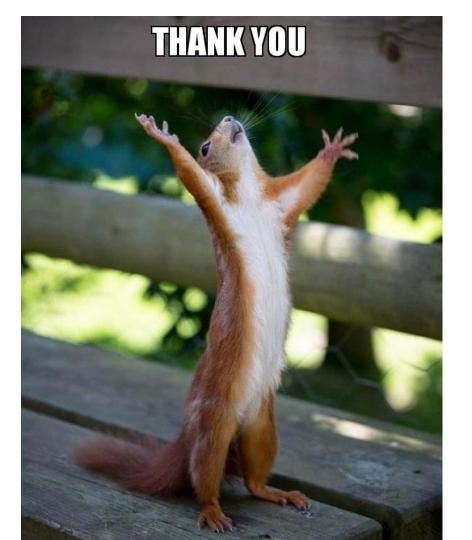
Combine all objectives \rightarrow we finally derive the new convolution

$$\mathbf{H}^{l+1} = \sigma((\alpha \mathbf{I} + \beta \hat{\mathbf{A}}_o - \gamma \hat{\mathbf{A}}_t - \delta \hat{\mathbf{A}}_{to})\mathbf{H}^l \mathbf{W}^l), \quad (8)$$

Experiment


	Cora	Citeseer	Pubmed	Computer	Photo	Chameleon	Squirrel	Actor
MLP	$ 72.09 \pm 0.32$	71.67 ± 0.40	87.47 ± 0.14	83.59 ± 0.89	90.49 ± 0.20	46.55 ± 0.42	30.67 ± 0.52	28.75 ± 0.88
GCN	87.50 ± 1.04	75.11 ± 1.12	87.20 ± 0.52	83.55 ± 0.38	89.30 ± 0.82	62.72 ± 2.09	47.26 ± 0.34	29.98 ± 1.18
GAT	88.25 ± 1.22	75.75 ± 1.23	85.88 ± 0.38	85.36 ± 0.50	90.81 ± 0.22	62.19 ± 3.78	$\underline{51.80} \pm 1.04$	28.17 ± 1.19
APPNP	88.36 ± 0.61	76.03 ± 1.27	86.21 ± 0.25	88.32 ± 0.36	94.44 ± 0.36	50.88 ± 1.18	33.58 ± 1.00	29.82 ± 0.82
GraphSage	88.01 ± 1.29	75.17 ± 1.35	87.39 ± 0.84	88.54 ± 0.69	94.23 ± 0.62	58.82 ± 2.29	41.19 ± 0.75	31.76 ± 0.73
ChebyNet	87.49 ± 0.90	75.50 ± 0.87	89.05 ± 0.29	89.77 ± 0.36	95.02 ± 0.41	59.98 ± 1.54	40.18 ± 0.55	35.85 ± 1.05
GPR-GNN	88.65 ± 0.75	75.70 ± 0.81	88.53 ± 0.30	87.63 ± 0.48	94.60 ± 0.30	67.96 ± 2.55	49.52 ± 5.00	30.78 ± 0.61
JKNET	86.99 ± 1.60	75.38 ± 1.30	88.64 ± 0.51	86.97 ± 0.56	92.68 ± 0.58	64.63 ± 3.08	44.91 ± 1.94	28.48 ± 1.25
GOAL	$ \textbf{ 88.75} \pm \textbf{0.87}$	$\textbf{77.15} \pm \textbf{0.95}$	$\textbf{89.25} \pm \textbf{0.55}$	$\textbf{91.33} \pm \textbf{0.38}$	$\textbf{95.60} \pm \textbf{0.44}$	$\textbf{71.65} \pm \textbf{1.66}$	$\textbf{60.53} \pm \textbf{1.60}$	$\textbf{36.46} \pm \textbf{1.02}$

Achieve best performance on all datasets.


Notably \rightarrow almost 9% better than the best baseline on Squirrel.

Experiment

The generated topology is way better than random and knn connection

