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Learn a regression function to predict the value representing the magnitude
of a phenomenon, where the value is observed with a sensor

« Example: Pressure, vibration, and temperature. In healthcare, pulsation, respiration, or body movements.
» Use case: We can replace intrusive sensors with non-intrusive ones, which will reduce the burden on patients.

» The observed value is not necessarily in agreement with the actual magnitude.

» Especially, low values can mean either actual low magnitude or incomplete observation.
» This leads to a bias toward lower values in labels and the resultant learning

Application in healthcare

— : Observed sensor outputs
------ : Actual magnitude of phenomenon
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Explicitly model incomplete observations by asymmetric noise

» Regression from uncorrupted data * Regression from asymmetrically corrupted data
(Our problem)
I _
y=f"(x)+ € Y =y+e
Oracle e.g., AWGN Asymmetric negative-valued noise
f= ar;grr}in L(f), (2) Asymmetrically corrupted data.
C
4 ° o o : Upper-side labeled data

Loss funct|on, e.g., squared loss

m : Lower-side labeled data

N A : Lower-side labeled data
® “{Incomplete ~ With unidentifiable
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x € R”(D € N) : Explanatory variable -+ : Biased regression line
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y €R : Real-valued label Explanatory variable — : Unbiased regression line




Asymmetric noise makes lower-side labeled data particularly unreliable
while keeping upper-side labeled data reliable

Assumption 2.1. Assume € L f*(x), Epe.)[es] = 0;
€a L f*(x), €, < 0 almost surely (a.s.); 2|es| < |ea| a.s.
when €, < 0; and {(x,,, Yn, v, ) }2_; are i.i.d. observations
in accordance with Egs. (1) and (4).

Lemma 2.2. Let F' = {f € F : |f(x) — f*(z)| <
les| a.s.}. When f € F, the following holds under Assump-
tion 2.1:

Ep(zy 1@<y G(@,Y)] = Epa,yir@<y) [G(Z,9)] (5)

for any function G : RP x R — R as long as the expecta-
tions exist.

€, does not change the expectation for our upper-side labeled data.
Thus, our upper-side labeled data (f (x) < y’) is still reliable for regression.



Rewrite the gradient into one that only requires upper-side labeled and unlabeled r,, = p(fi(z) < v)
data in our corrupted data

» Gradient for regression from uncorrupted data

A

f = argmin L(f),

feF

‘C(f) — ]Ep(:n,y) [L(f(m)a y)]

2)

Mo = p(y < fi(z))

Treated as hyperparameter

V‘C(ft) = IEp(:z:,y) [VL(ft (:I:), y)]7

where

+ 71'loI[-?Jp(ar:,y|y<ft (x)) [VL(ft (m)a y)] .

VL(fi(x),y) =

OL(f(x),y)

(6)

00 f=f
VL(ft) = TupBp(a,y| £ (x)<y) [VL(fe (), y)]

(7

Unbiased and consistent

* Proposed gradient for regression from asymmetrically corrupted data

Condition 3.1. For y < f(x), let g(f(x)) be defined as
VL(f(x),y). Then g(f(x)) depends only on f(x) and is

conditionally independent of y given f(x).

Olf(x) —y| _ 0f(x)

00 06

when y < f(x),

(®)

Vﬁ(ft) = Ty

]Ep(w,y’lft(w)éy’)

+|E

p(x)

VL(fi(),9)]

[g(ft(w))] — Tuplep(a| £ (x)<y’)

Upper-side labeled data
Unlabeled data

— Upper and Unlabeled Regression (U2 Regression)

9(i(=))].
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Our algorithm is unbiased as if it were learned from uncorrupted data that
does not involve incomplete observations.

Unbiasedness and Consistency of Gradient

Proposition 3.2. Suppose that Assumption 2.1 holds and the
loss function L(f(x),y) satisfies Condition 3.1. Then, the
gradient Vﬁ( f+) in Eq. (9) and its empirical approximation
VL(f,) in Eq. (10) are unbiased and consistent with the
gradient V L(f:) in Eq. (6) a.s.

Assumption 3.3. Assume ¢, I x.

Lemma 3.4. Let VL(f,) be a variant of the gradient in
Eq. (7) replacing p(x,y) with p(x,y’), § be the differ-
ence between the expectations of the gradients in the upper
side and the lower side § = |Ep(z 4| (z)<y) [VL(f (), )]
—Ep(z,yly< ) [VL(f(x),y)]|, n € [0,1] be the probabil-
ity of being 0 < ¢, and £ € [0,1] be the probability of
€. = 0. Then, VL(f;) is not consistent with the gradient
VL(f:) in Eq. (6) a.s., and the difference (bias) between
them at step t + 1 in the gradient descent is

n(1—n)1—§) .
1 — ,'75 d S |v£(ft) - V‘C(ft)l (11)

VL(f2) = TupBpay @< | VEi(@), 1)
+ Epw) | 9(f1(@))| = TupBporu(mr<y) [9(:())].
&)

Empirical approximation

VL) = ”—[ >

u
P (@) e{ Xupwip)

+H 3 g(ﬁ(a:))] —@[ . 9<ft<w>>]7

n
x€Xun up z€EXyp

w(ft(w),m] (10)



Experiments

« Demonstration of unbiased learning
» Errors (predicted value minus true value) by proposed method (blue) and by MSE (green)

Proposed method achieved
approximately unbiased learning

Our validation set-based
s approach for estimating the
x : MSE hyperparameters is robust

Data index
« Performance (MAE, lower is better) of proposed method over different sizes of validation set.
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Experiments

« Comparison between proposed method and baselines in terms of MAE (smaller is better).
* Best methods are in bold

Specification  Throwing A Lifting Lowering Throwing B Avg.

MSE 2.38 +0.03 1.54 +£0.01 1.42 £0.01 1.37£0.01 1.21+0.01  1.58
MAE 2.14+0.02 1.46 +£0.01 1.44 £0.01 1.33£0.01 1.31+£0.01 1.54
Huber 2.04 +0.02 1.66 £+ 0.01 1.45£0.01 1.50 £0.01 1.324+0.01 1.59
Proposed-1  1.55£0.02 1.18 £0.01 1.11+0.01 1.14 £ 0.01 1.03+£0.01 1.20
Proposed-2 1.324+0.01 0.99+0.01 0.94+0.01 0.86+0.01 0.97£0.01 1.02

» Real use case for healthcare
* We estimate intrusive arm sensor output from outputs of non-intrusive bed sensors

* We use evaluation metrics designed for sleep-wake discrimination
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Proposed methods significantly
outperformed the baselines.

Arm sensor can be replaced
with bed sensors



Thank you!

« We formulate a novel problem of learning a regression
function for a sensor magnitude with asymmetrically
corrupted data. This is vital for applications where the
sensor is susceptible to unidentifiable incomplete

observations.

» We derive an unbiased and consistent learning
algorithm (U2 regression) for this problem with the new

class of loss functions.

« Extensive experiments on synthetic and six real-world
regression tasks including a real use case for
healthcare demonstrate the effectiveness of the

proposed method.

Sensor value

— : Observed sensor outputs
------ : Actual magnitude of phenomenon

Actual low values Low values from incomplete points

[_1: Points without incomplete observations
: Points with incomplete observations
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