The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond

Jiin Woo, Gauri Joshi, Yuejie Chi

Carnegie Mellon University

ICML July 2023

Reinforcement learning (RL)

In RL, an agent learns optimal decisions by interacting with an environment.

Real-world applications: autonomous driving, game, clinical trials, ...

1

Challenges: Data and computation

 Sample efficiency: Collecting data samples might be expensive or time-consuming

clinical trials

autonomous driving

Challenges: Data and computation

 Sample efficiency: Collecting data samples might be expensive or time-consuming

clinical trials

autonomous driving

 Computational efficiency: Training RL algorithms might take a long time

 $many \ CPUs \ / \ GPUs \ / \ TPUs + computing hours$

RL meets federated learning

Can we harness the power of federated learning?

Federated reinforcement learning enables multiple agents to collaboratively learn a global policy without sharing datasets.

This paper

Understand the sample efficiency of Q-learning in federated settings.

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?

Asynchronous Q-learning

Bellman equation: The optimal Q-function Q^* is unique solution to

$$Q^{\star}(s,a) = \mathcal{T}(Q^{\star})(s,a) := r(s,a) + \gamma \mathop{\mathbb{E}}_{\substack{s' \sim P(\cdot \mid s,a)}} [\max_{a'} Q^{\star}(s',a')]$$

Q-learning: Stochastic approximation for solving Bellman equation. With a transition sample (s_t, a_t, r_t, s_{t+1}) , update Q_t as

$$Q_{t+1}(s_t, a_t) = (1 - \eta)Q_t(s_t, a_t) + \eta \underbrace{(r_t + \gamma \max_{a' \in \mathcal{A}} Q_t(s_{t+1}, a'))}_{\mathcal{T}_t(Q_t)}, \quad t \ge 0$$

 η : step size

Asynchronous setting: Update single entry (s_t, a_t) along a *Markovian trajectory* generated by *behavior policy* π_b

Federated asynchronous Q-learning with local updates

Local update (agent): Q-learning updates.

Performs
$$\tau$$
 rounds of local Q-learning updates.
$$Q_{t+1}^k(s_t,a_t) \leftarrow (1-\eta)Q_t^k(s_t,a_t) + \eta \mathcal{T}_t(Q_t^k)(s_t,a_t)$$
 Agent 1 Agent 2 ... Agent k ... Ag

Local trajectories might be heterogeneous!

Parameter server

Federated asynchronous Q-learning with local updates

Local update (agent):
 Performs τ rounds of local Q-learning updates.

$$Q_{t+1}^{k}(s_{t}, a_{t}) \leftarrow (1-\eta)Q_{t}^{k}(s_{t}, a_{t}) + \eta \mathcal{T}_{t}(Q_{t}^{k})(s_{t}, a_{t})$$

 Periodic averaging (server): Averages the local Q-tables.

$$Q_t = \frac{1}{K} \sum_{k=1}^K Q_t^k.$$

Federated asynchronous Q-learning with local updates

Local update (agent):
 Performs τ rounds of local Q-learning updates.

$$Q_{t+1}^k(s_t, a_t) \leftarrow (1-\eta)Q_t^k(s_t, a_t) + \eta \mathcal{T}_t(Q_t^k)(s_t, a_t)$$

 Periodic averaging (server): Averages the local Q-tables.

$$Q_t = \frac{1}{K} \sum_{k=1}^K Q_t^k.$$

Can we achieve faster convergence with heterogeneous local updates?

Sample complexity of federated Q-learning

Prior art

Unfavorable dependencies on salient problem parameters (γ , μ_{\min} , $|\mathcal{S}|$)

Our theorem

Theorem (this work)

For sufficiently small $\epsilon>0$, if τ is not too large, federated asynchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty \leq \epsilon$ with sample complexity at most

$$\widetilde{O}\left(\frac{C_{\mathsf{het}}}{K\mu_{\mathsf{min}}(1-\gamma)^5\epsilon^2}\right)$$

ignoring the burn-in cost that depends on the mixing times, where

$$\mu_{\min} := \min_{k,s,a} \underbrace{\mu_{\mathsf{b}}^k(s,a)}_{\substack{\text{stationary distribution}}} \quad \text{and } C_{\mathsf{het}} := K \max_{k,s,a} \frac{\mu_{\mathsf{b}}^k(s,a)}{\sum_{k=1}^K \mu_{\mathsf{b}}^k(s,a)}.$$

- $1 \le C_{\rm het} \le \frac{1}{\mu_{\rm min}}$ measures the heterogeneity of local behavior policies.
- $C_{\rm het} \approx 1$ when the local behavior policies are similar.

Near-optimal linear speedup

Linear speedup with near-optimal parameter dependencies!

Curse of heterogeneity?

• Full coverage: The insufficient coverage of *just one* agent can significantly slow down the convergence (i.e. $\mu_{\min} \approx 0$)

Curse of heterogeneity?

- Full coverage: The insufficient coverage of *just one* agent can significantly slow down the convergence (i.e. $\mu_{\min} \approx 0$)
- Curse of heterogeneity: Performance degenerates when local behavior policies are heterogeneous (i.e. $C_{\text{het}} \gg 1$).

Is it possible to alleviate these limitations?

How to federate Q-learning without the curse of heterogeneity?

Importance averaging

Key observation: Not all updates are of same quality due to limited visits induced by the behavior policy.

Importance averaging

Key observation: Not all updates are of same quality due to limited visits induced by the behavior policy.

Importance averaging: Averages the local Q-values assigning higher weights on more frequently updated local values via

$$Q_t(s, a) = \frac{1}{K} \sum_{k=1}^{K} \alpha_t^k(s, a) Q_t^k(s, a),$$

where

$$\alpha_t^k = \frac{(1-\eta)^{-N_{t-\tau,t}^k(s,a)}}{\sum_{k=1}^K (1-\eta)^{-N_{t-\tau,t}^k(s,a)}}, \quad N_{t-\tau,t}^k(s,a) = \quad \text{number of visits} \quad \text{in the sync period} \quad .$$

Sample complexity of federated Q-learning with importance averaging

Our theorem

Theorem (this work)

For sufficiently small $\epsilon>0$, if τ is not too large, federated asynchronous Q-learning with importance averaging yields $\|\widehat{Q}-Q^\star\|_\infty \leq \epsilon$ with sample complexity at most

$$\widetilde{O}\left(\frac{1}{K\mu_{\mathsf{avg}}(1-\gamma)^5\epsilon^2}\right)$$

ignoring the burn-in cost that depends on the mixing times, where

$$\mu_{\text{avg}} = \min_{s,a} \frac{1}{K} \sum_{k=1}^K \mu_{\text{b}}^k(s,a).$$

- No performance degeneration due to heterogeneity (C_{het}) .
- Near-optimal linear speedup.

Equal averaging versus importance averaging

Faster convergence: $\mu_{\text{avg}} \geq \mu_{\text{min}}$

Partial-coverage

Partial coverage is enough as long as agents collectively cover the entire state-action space, i.e.,

$$\mu_{\mathsf{avg}} = \min_{s,a} \frac{1}{K} \sum_{k=1}^K \mu_{\mathsf{b}}^k(s,a) > 0$$

No longer require full coverage of every individual agent!

Blessing of heterogeneity

Overcome the insufficient coverage of individual agents by exploiting heterogeneity!

Final remarks

Near-optimal linear speedup of federated Q-learning without full coverage of individual agents!

Thanks!

 The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond, ICML 2023. (arXiv: 2305.10697)

