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Reinforcement learning (RL)

In RL, an agent learns optimal decisions by interacting with an environment.

At last — a computer program that
can beat achampion Go player Pict4s4
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Real-world applications: autonomous driving, game, clinical trials, ...



Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming
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Challenges: Data and computation

® Sample efficiency: Collecting data samples might be expensive or
time-consuming
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® Computational efficiency: Training RL algorithms might take a long
time

many CPUs / GPUs / TPUs + computing hours



RL meets federated learning

Can we harness the power of federated learning?

Parameter server
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Federated reinforcement learning enables multiple agents to
collaboratively learn a global policy without sharing datasets.




This paper

Understand the sample efficiency of Q-learning in federated settings. J

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?



How to federate Q-learning?



Asynchronous Q-learning

Bellman equation: The optimal Q-function Q* is unique solution to

Q*(s,0) =T(Q")(s,a) :=7(s,a) +v E  [maxQ*(s,ad)]

s'~P([sa) a

Q-learning: Stochastic approximation for solving Bellman equation.
With a transition sample (s¢, at, 4, S¢+1), update Q; as

Qe41(st,a¢) = (1 —n)Qe(st,ar) + 1 (re + 7 max Qt(s¢41,a")), t>0

T (Q+)

7: step size
Asynchronous setting: Update single entry (s, a;) along a Markovian
trajectory generated by behavior policy m,
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Federated asynchronous Q-learning with local updates

Parameter server

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

QY1 (51, a1) — (1=m)QF (51, ar)+nTi(QF) (s, ar)
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Local trajectories might be
heterogeneous!



Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

Parameter server

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):

Averages the local Q-tables. é:l @ |
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Federated asynchronous Q-learning with local updates

® Local update (agent):
Performs 7 rounds of local
Q-learning updates.

Parameter server

QF i1 (st a0) — (1=0)QF (50, a)+0Ti(QF) (st ar)

® Periodic averaging (server):
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Can we achieve faster convergence with heterogeneous local updates? )




Sample complexity of federated Q-learning



Prior art
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Unfavorable dependencies on salient problem parameters (7, tmin, |S]|) J




Our theorem

Theorem (this work)

For sufficiently small e > 0, if T is not too large, federated asynchronous
Q-learning yields ||Q — Q*||oo < € with sample complexity at most

~ Chet
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ignoring the burn-in cost that depends on the mixing times, where
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® 1 < Chet < % measures the heterogeneity of local behavior
policies.

® Chet = 1 when the local behavior policies are similar.
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Near-optimal linear speedup
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Linear speedup with near-optimal parameter dependencies!
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Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)
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Curse of heterogeneity?

® Full coverage: The insufficient coverage of just one agent can
significantly slow down the convergence (i.e. fimin = 0)

® Curse of heterogeneity: Performance degenerates when local
behavior policies are heterogeneous (i.e. Chetr > 1).

) |
L J

%ﬁ - }l

Is it possible to alleviate these limitations?
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How to federate Q-learning

without the curse of heterogeneity?



Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.
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Importance averaging

Key observation: Not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights
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Importance averaging: Averages the local Q-values assigning higher
weights on more frequently updated local values via

Z (5,a)QF(s,a),

where
N ) i
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number of visits

Ntkff,t (S’ CL) =

in the sync period °
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Sample complexity of federated Q-learning

with importance averaging



Our theorem

Theorem (this work)

For sufficiently small € > 0, if T is not too large, federated asynchronous
Q-learning with importance averaging yields ||Q — Q*||co < € with sample

complexity at most
~ 1
(Tt —72)
[(,uavg;(1 - 7)562

ignoring the burn-in cost that depends on the mixing times, where
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® No performance degeneration due to heterogeneity (Chet).

® Near-optimal linear speedup.
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Equal averaging versus importance averaging
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Faster convergence: favg > fimin J
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Partial-coverage

Partial coverage is enough as long as agents collectively cover the entire
state-action space, i.e.,

P

No longer require full coverage of every individual agent!
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Blessing of heterogeneity
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Overcome the insufficient coverage of individual agents
by exploiting heterogeneity! J
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Final remarks

Parameter server

Agent 1 Agent 2 - Agentk - AgentK
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Thanks!

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and
Beyond, ICML 2023. (arXiv: 2305.10697)
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